{"title":"Assessment of a novel k–ω turbulence model for transonic centrifugal impeller simulations","authors":"Zhiyuan Liu, Peng Wang, Ben Zhao, Ce Yang","doi":"10.1139/tcsme-2021-0159","DOIUrl":null,"url":null,"abstract":"Numerical simulation of high pressure ratio transonic centrifugal compressors is challenging for the existing turbulence models. A lagged k–ω model proposed by Olsen and Coakley for nonequilibrium effects was first applied to simulate the transonic centrifugal impeller SRV2-O. As comparative case studies, four other turbulence models ( k–ω model, RNG k–ε model, SST-CC model, and EARSM model) were also computed. The comparison showed that ( i) the selection of the turbulence model had a great influence on SRV2-O impeller simulations; ( ii) the lagged k–ω model had an advantage over other models in terms of overall pressure ratio and internal flow characteristics; and ( iii) the lagged model predicted a smaller blockage area caused by leakage vortex breakdown than other models, closer to the experimental result. The detailed parameter examination indicated that the nonequilibrium parameter a0 in the lagged model had little influence on the Mach number distribution and choking mass flow rate but a significant influence on the static pressure on the shroud casing. For a higher Mach number compressor, a smaller a0 is recommended for bettering the simulation accuracy.","PeriodicalId":23285,"journal":{"name":"Transactions of The Canadian Society for Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of The Canadian Society for Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1139/tcsme-2021-0159","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 2
Abstract
Numerical simulation of high pressure ratio transonic centrifugal compressors is challenging for the existing turbulence models. A lagged k–ω model proposed by Olsen and Coakley for nonequilibrium effects was first applied to simulate the transonic centrifugal impeller SRV2-O. As comparative case studies, four other turbulence models ( k–ω model, RNG k–ε model, SST-CC model, and EARSM model) were also computed. The comparison showed that ( i) the selection of the turbulence model had a great influence on SRV2-O impeller simulations; ( ii) the lagged k–ω model had an advantage over other models in terms of overall pressure ratio and internal flow characteristics; and ( iii) the lagged model predicted a smaller blockage area caused by leakage vortex breakdown than other models, closer to the experimental result. The detailed parameter examination indicated that the nonequilibrium parameter a0 in the lagged model had little influence on the Mach number distribution and choking mass flow rate but a significant influence on the static pressure on the shroud casing. For a higher Mach number compressor, a smaller a0 is recommended for bettering the simulation accuracy.
期刊介绍:
Published since 1972, Transactions of the Canadian Society for Mechanical Engineering is a quarterly journal that publishes comprehensive research articles and notes in the broad field of mechanical engineering. New advances in energy systems, biomechanics, engineering analysis and design, environmental engineering, materials technology, advanced manufacturing, mechatronics, MEMS, nanotechnology, thermo-fluids engineering, and transportation systems are featured.