Sensitivity Analysis of Precision Inertial Sensor‐based Navigation System (SAPIENS)

Rachit Bhatia, D. Geller
{"title":"Sensitivity Analysis of Precision Inertial Sensor‐based Navigation System (SAPIENS)","authors":"Rachit Bhatia, D. Geller","doi":"10.1002/navi.397","DOIUrl":null,"url":null,"abstract":"The future of deep space exploration depends upon technological advancement towards improving spacecraft's autonomy and versatility. This study aims to examine the feasibility of autonomous orbit determination using advanced accelerometer measurements. The objective of this research is to ascertain specific sensor requirements to meet pre-defined mission navigation error budgets. Traditional inertial navigation (dead reckoning and external aiding) is not considered. Instead, measurements from pairs of advanced, highly sensitive accelerometers (e.g., cold atom accelerometers) are used onboard to determine gravity field gradients, which are then correlated to onboard gravity maps and used to determine orbital information. Linear Covariance Theory helps to efficiently conduct an error budget analysis of the system. This error budget analysis helps to determine the effect of specific error sources in the sensor measurements, thereby providing information to rank and compare relevant sensor parameters and determine an optimal sensor configuration for a given space mission. The procedure is repeated to evaluate different accelerometer configurations and sensor parameters.","PeriodicalId":30601,"journal":{"name":"Annual of Navigation","volume":"67 1","pages":"795-822"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/navi.397","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual of Navigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/navi.397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The future of deep space exploration depends upon technological advancement towards improving spacecraft's autonomy and versatility. This study aims to examine the feasibility of autonomous orbit determination using advanced accelerometer measurements. The objective of this research is to ascertain specific sensor requirements to meet pre-defined mission navigation error budgets. Traditional inertial navigation (dead reckoning and external aiding) is not considered. Instead, measurements from pairs of advanced, highly sensitive accelerometers (e.g., cold atom accelerometers) are used onboard to determine gravity field gradients, which are then correlated to onboard gravity maps and used to determine orbital information. Linear Covariance Theory helps to efficiently conduct an error budget analysis of the system. This error budget analysis helps to determine the effect of specific error sources in the sensor measurements, thereby providing information to rank and compare relevant sensor parameters and determine an optimal sensor configuration for a given space mission. The procedure is repeated to evaluate different accelerometer configurations and sensor parameters.
基于精密惯性传感器的导航系统(SAPIENS)灵敏度分析
深空探测的未来取决于提高航天器自主性和多功能性的技术进步。本研究旨在检验利用先进加速度计测量的自主轨道确定的可行性。本研究的目的是确定特定的传感器需求,以满足预先定义的任务导航误差预算。传统的惯性导航(航位推算和外部辅助)不被考虑在内。相反,由一对先进的、高度敏感的加速度计(例如,冷原子加速度计)测量的结果被用于机载确定重力场梯度,然后将其与机载重力图相关联,并用于确定轨道信息。线性协方差理论有助于有效地对系统进行误差预算分析。这种误差预算分析有助于确定传感器测量中特定误差源的影响,从而提供信息,对相关传感器参数进行排序和比较,并确定给定空间任务的最佳传感器配置。重复该过程以评估不同的加速度计配置和传感器参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信