Fuzzy controller hardware implementation for an EV's HESS energy management

IF 0.8 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
J. Hatim, Askour Rachid, Bououlid Idrissi Badr
{"title":"Fuzzy controller hardware implementation for an EV's HESS energy management","authors":"J. Hatim, Askour Rachid, Bououlid Idrissi Badr","doi":"10.32985/ijeces.14.3.9","DOIUrl":null,"url":null,"abstract":"The recent technological advances related to embedded systems, and the increased requirements of the Electric Vehicle (EV) industry, lead to the evolution of design and validation methodologies applied to complex systems, in order to design a product that respects the requirements defined according to its performance, safety, and reliability. This research paper presents a design and validation methodology, based on a hardware-in-the-loop (HIL) approach, including a software platform represented by Matlab/ Simulink and a real-time STM32 microcontroller used as a hardware platform. The objective of this work is to evaluate and validate an Energy Management System (EMS) based on Fuzzy Logic Controller (FLC), developed in C code and embedded on an STM32 microcontroller. The developed EMS is designed to control, in real-time, the energy flow in a hybrid energy storage system (HESS), designed in an active topology, made of a Li-ion battery and Super-Capacitors (SC). The proposed HESS model was organized using the Energetic Macroscopic Representation (EMR) and constructed on Matlab/Simulink software platform. The evaluation and validation of the developed algorithm were performed by comparing the HIL and simulation results under the New European Driving Cycle (NEDC).","PeriodicalId":41912,"journal":{"name":"International Journal of Electrical and Computer Engineering Systems","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32985/ijeces.14.3.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The recent technological advances related to embedded systems, and the increased requirements of the Electric Vehicle (EV) industry, lead to the evolution of design and validation methodologies applied to complex systems, in order to design a product that respects the requirements defined according to its performance, safety, and reliability. This research paper presents a design and validation methodology, based on a hardware-in-the-loop (HIL) approach, including a software platform represented by Matlab/ Simulink and a real-time STM32 microcontroller used as a hardware platform. The objective of this work is to evaluate and validate an Energy Management System (EMS) based on Fuzzy Logic Controller (FLC), developed in C code and embedded on an STM32 microcontroller. The developed EMS is designed to control, in real-time, the energy flow in a hybrid energy storage system (HESS), designed in an active topology, made of a Li-ion battery and Super-Capacitors (SC). The proposed HESS model was organized using the Energetic Macroscopic Representation (EMR) and constructed on Matlab/Simulink software platform. The evaluation and validation of the developed algorithm were performed by comparing the HIL and simulation results under the New European Driving Cycle (NEDC).
电动汽车HESS能量管理的模糊控制器硬件实现
最近与嵌入式系统相关的技术进步,以及电动汽车(EV)行业需求的增加,导致了应用于复杂系统的设计和验证方法的演变,以便根据其性能、安全性和可靠性设计符合要求的产品。本研究论文提出了一种基于硬件在环(HIL)方法的设计和验证方法,包括以Matlab/ Simulink为代表的软件平台和作为硬件平台的实时STM32微控制器。本工作的目的是评估和验证一个基于模糊逻辑控制器(FLC)的能源管理系统(EMS),该系统用C代码开发并嵌入在STM32微控制器上。开发的EMS旨在实时控制由锂离子电池和超级电容器(SC)组成的主动拓扑结构中的混合储能系统(HESS)中的能量流。采用能量宏观表示(EMR)组织HESS模型,在Matlab/Simulink软件平台上构建HESS模型。通过比较新欧洲驾驶循环(NEDC)下的HIL和仿真结果,对所开发算法进行了评估和验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
11.80%
发文量
69
期刊介绍: The International Journal of Electrical and Computer Engineering Systems publishes original research in the form of full papers, case studies, reviews and surveys. It covers theory and application of electrical and computer engineering, synergy of computer systems and computational methods with electrical and electronic systems, as well as interdisciplinary research. Power systems Renewable electricity production Power electronics Electrical drives Industrial electronics Communication systems Advanced modulation techniques RFID devices and systems Signal and data processing Image processing Multimedia systems Microelectronics Instrumentation and measurement Control systems Robotics Modeling and simulation Modern computer architectures Computer networks Embedded systems High-performance computing Engineering education Parallel and distributed computer systems Human-computer systems Intelligent systems Multi-agent and holonic systems Real-time systems Software engineering Internet and web applications and systems Applications of computer systems in engineering and related disciplines Mathematical models of engineering systems Engineering management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信