Co-rotating vortices with N fold symmetry for the inviscid surface quasi-geostrophic equation

IF 1.2 2区 数学 Q1 MATHEMATICS
Ludovic Godard-Cadillac, Philippe Gravejat, D. Smets
{"title":"Co-rotating vortices with N fold symmetry for the inviscid surface quasi-geostrophic equation","authors":"Ludovic Godard-Cadillac, Philippe Gravejat, D. Smets","doi":"10.1512/iumj.2023.72.9206","DOIUrl":null,"url":null,"abstract":"We provide a variational construction of special solutions to the generalized surface quasi-geostrophic equations. These solutions take the form of N vortex patches with N-fold symmetry , which are steady in a uniformly rotating frame. Moreover, we investigate their asymptotic properties when the size of the corresponding patches vanishes. In this limit, we prove these solutions to be a desingularization of N Dirac masses with the same intensity, located on the N vertices of a regular polygon rotating at a constant angular velocity.","PeriodicalId":50369,"journal":{"name":"Indiana University Mathematics Journal","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2020-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indiana University Mathematics Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1512/iumj.2023.72.9206","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 13

Abstract

We provide a variational construction of special solutions to the generalized surface quasi-geostrophic equations. These solutions take the form of N vortex patches with N-fold symmetry , which are steady in a uniformly rotating frame. Moreover, we investigate their asymptotic properties when the size of the corresponding patches vanishes. In this limit, we prove these solutions to be a desingularization of N Dirac masses with the same intensity, located on the N vertices of a regular polygon rotating at a constant angular velocity.
无粘性地表准地转方程的N重对称共旋旋涡
我们给出了广义地表准地转方程特解的变分构造。这些解采用N重对称的N个涡旋片的形式,在均匀旋转的框架中是稳定的。此外,我们还研究了当相应补丁的大小消失时它们的渐近性质。在这个极限下,我们证明了这些解是具有相同强度的N个狄拉克质量的去偏振,位于以恒定角速度旋转的正多边形的N个顶点上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
52
审稿时长
4.5 months
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信