{"title":"Conformal Transformation of Uniform Domains Under Weights That Depend on Distance to The Boundary","authors":"Ryan Gibara, N. Shanmugalingam","doi":"10.1515/agms-2022-0141","DOIUrl":null,"url":null,"abstract":"Abstract The sphericalization procedure converts a Euclidean space into a compact sphere. In this note we propose a variant of this procedure for locally compact, rectifiably path-connected, non-complete, unbounded metric spaces by using conformal deformations that depend only on the distance to the boundary of the metric space. This deformation is locally bi-Lipschitz to the original domain near its boundary, but transforms the space into a bounded domain. We will show that if the original metric space is a uniform domain with respect to its completion, then the transformed space is also a uniform domain.","PeriodicalId":48637,"journal":{"name":"Analysis and Geometry in Metric Spaces","volume":"10 1","pages":"297 - 312"},"PeriodicalIF":0.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Geometry in Metric Spaces","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2022-0141","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract The sphericalization procedure converts a Euclidean space into a compact sphere. In this note we propose a variant of this procedure for locally compact, rectifiably path-connected, non-complete, unbounded metric spaces by using conformal deformations that depend only on the distance to the boundary of the metric space. This deformation is locally bi-Lipschitz to the original domain near its boundary, but transforms the space into a bounded domain. We will show that if the original metric space is a uniform domain with respect to its completion, then the transformed space is also a uniform domain.
期刊介绍:
Analysis and Geometry in Metric Spaces is an open access electronic journal that publishes cutting-edge research on analytical and geometrical problems in metric spaces and applications. We strive to present a forum where all aspects of these problems can be discussed.
AGMS is devoted to the publication of results on these and related topics:
Geometric inequalities in metric spaces,
Geometric measure theory and variational problems in metric spaces,
Analytic and geometric problems in metric measure spaces, probability spaces, and manifolds with density,
Analytic and geometric problems in sub-riemannian manifolds, Carnot groups, and pseudo-hermitian manifolds.
Geometric control theory,
Curvature in metric and length spaces,
Geometric group theory,
Harmonic Analysis. Potential theory,
Mass transportation problems,
Quasiconformal and quasiregular mappings. Quasiconformal geometry,
PDEs associated to analytic and geometric problems in metric spaces.