Mechanical characterization of randomly oriented short Sansevieria Trifasciata natural fibre composites

IF 1.1 4区 工程技术 Q4 ENGINEERING, CHEMICAL
Fantin Irudaya Raj, Appadurai M, Lurthu Pushparaj, Chithambara Thanu
{"title":"Mechanical characterization of randomly oriented short Sansevieria Trifasciata natural fibre composites","authors":"Fantin Irudaya Raj, Appadurai M, Lurthu Pushparaj, Chithambara Thanu","doi":"10.1515/ipp-2023-4377","DOIUrl":null,"url":null,"abstract":"Abstract The present work investigates the mechanical characteristics of randomly oriented short Sansevieria Trifasciata Fibre Polyester (STFP) composites. The STFP composites are fabricated using compression moulding methods with varying fibre weight percentages (5 %–50 %) and fibre lengths (5 mm–50 mm). It has been observed that the impact, flexural, and tensile strength of STFPs improve as the length of the fibre increases, up to a maximum of 40 mm. After that, these properties start to decrease as the length of the fibre further increases. Further, the analysis revealed that STFPs exhibited an increase in properties when the fibre weight percentage was less than 40 %, followed by a decrease in properties as the fibre percentage increased beyond that point. The impact strength of STFP is around 8.2 J/cm2. Similarly, the STFP has a flexural modulus and strength of about 3.4 GPa and 82.6 MPa, respectively. Lastly, the tensile strength of STFP is around 78.26 MPa, the elongation at break is between 6.25 % and 9.36 %, and the Young’s modulus is 11.8 GPa. The matrix and fibre interaction were examined by Scanning Electron Microscopy (SEM). Furthermore, Thermogravimetric (TGA) and Differential Scanning Calorimeter (DSC) analyses are carried out. From these analyses, the thermal stability of STFP is 200 °C and its activation energy is 65.48 kJ/mol. After a thorough comparison with other well-known natural fibres, the proposed properties of STFP demonstrate its superiority as a practical and effective natural fibre composite.","PeriodicalId":14410,"journal":{"name":"International Polymer Processing","volume":"0 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Polymer Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ipp-2023-4377","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The present work investigates the mechanical characteristics of randomly oriented short Sansevieria Trifasciata Fibre Polyester (STFP) composites. The STFP composites are fabricated using compression moulding methods with varying fibre weight percentages (5 %–50 %) and fibre lengths (5 mm–50 mm). It has been observed that the impact, flexural, and tensile strength of STFPs improve as the length of the fibre increases, up to a maximum of 40 mm. After that, these properties start to decrease as the length of the fibre further increases. Further, the analysis revealed that STFPs exhibited an increase in properties when the fibre weight percentage was less than 40 %, followed by a decrease in properties as the fibre percentage increased beyond that point. The impact strength of STFP is around 8.2 J/cm2. Similarly, the STFP has a flexural modulus and strength of about 3.4 GPa and 82.6 MPa, respectively. Lastly, the tensile strength of STFP is around 78.26 MPa, the elongation at break is between 6.25 % and 9.36 %, and the Young’s modulus is 11.8 GPa. The matrix and fibre interaction were examined by Scanning Electron Microscopy (SEM). Furthermore, Thermogravimetric (TGA) and Differential Scanning Calorimeter (DSC) analyses are carried out. From these analyses, the thermal stability of STFP is 200 °C and its activation energy is 65.48 kJ/mol. After a thorough comparison with other well-known natural fibres, the proposed properties of STFP demonstrate its superiority as a practical and effective natural fibre composite.
随机定向短三叶草天然纤维复合材料的力学性能
摘要本工作研究了随机取向的短Sansevieria Trifasita纤维聚酯(STFP)复合材料的力学特性。STFP复合材料采用不同纤维重量百分比(5%-50%)和纤维长度(5 毫米-50 mm)。已经观察到,STFP的冲击、弯曲和拉伸强度随着纤维长度的增加而提高,最高可达40 此后,随着纤维长度的进一步增加,这些性能开始降低。此外,分析表明,当纤维重量百分比小于40时,STFP的性能有所提高 %, 随后随着纤维百分比增加超过该点,性能下降。STFP的冲击强度约为8.2 J/cm2。类似地,STFP具有约3.4的弯曲模量和强度 GPa和82.6 MPa。最后,STFP的抗拉强度约为78.26 MPa,断裂伸长率在6.25之间 % 和9.36 %, 杨氏模量为11.8 GPa。用扫描电子显微镜(SEM)研究了基体与纤维的相互作用。此外,还进行了热重分析(TGA)和差示扫描量热仪(DSC)分析。根据这些分析,STFP的热稳定性为200 °C,其活化能为65.48 kJ/mol。在与其他众所周知的天然纤维进行彻底比较后,STFP的性能证明了其作为一种实用有效的天然纤维复合材料的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Polymer Processing
International Polymer Processing 工程技术-高分子科学
CiteScore
2.20
自引率
7.70%
发文量
62
审稿时长
6 months
期刊介绍: International Polymer Processing offers original research contributions, invited review papers and recent technological developments in processing thermoplastics, thermosets, elastomers and fibers as well as polymer reaction engineering. For more than 25 years International Polymer Processing, the journal of the Polymer Processing Society, provides strictly peer-reviewed, high-quality articles and rapid communications from the leading experts around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信