Equations of State for the Thermodynamic Properties of Binary Mixtures for Helium-4, Neon, and Argon

IF 4.4 2区 工程技术 Q2 CHEMISTRY, MULTIDISCIPLINARY
J. Tkaczuk, I. Bell, E. Lemmon, N. Luchier, F. Millet
{"title":"Equations of State for the Thermodynamic Properties of Binary Mixtures for Helium-4, Neon, and Argon","authors":"J. Tkaczuk, I. Bell, E. Lemmon, N. Luchier, F. Millet","doi":"10.1063/1.5142275","DOIUrl":null,"url":null,"abstract":"Based on the conceptual design reports for the Future Circular Collider cryogenic system, the need for more accurate thermodynamic property models of cryogenic mixtures of noble gases was identified. Both academic institutes and industries have identified the lack of a reliable equation of state for mixtures used at very low temperatures. Detailed cryogenic architecture modeling and design cannot be carried out without accurate fluid properties. Therefore, the helium–neon equation was the first goal of this work, and it was further extended to other fluids beneficial for scientific and industrial applications beyond the particle physics needs. The properties of the noble gas mixtures of helium–neon, neon–argon, and helium–argon are accurately modeled with the equations of state explicit in the Helmholtz energy.","PeriodicalId":16783,"journal":{"name":"Journal of Physical and Chemical Reference Data","volume":"49 1","pages":"023101"},"PeriodicalIF":4.4000,"publicationDate":"2020-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1063/1.5142275","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physical and Chemical Reference Data","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/1.5142275","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 14

Abstract

Based on the conceptual design reports for the Future Circular Collider cryogenic system, the need for more accurate thermodynamic property models of cryogenic mixtures of noble gases was identified. Both academic institutes and industries have identified the lack of a reliable equation of state for mixtures used at very low temperatures. Detailed cryogenic architecture modeling and design cannot be carried out without accurate fluid properties. Therefore, the helium–neon equation was the first goal of this work, and it was further extended to other fluids beneficial for scientific and industrial applications beyond the particle physics needs. The properties of the noble gas mixtures of helium–neon, neon–argon, and helium–argon are accurately modeled with the equations of state explicit in the Helmholtz energy.
氦-4、氖和氩二元混合物热力学性质的状态方程
根据未来环形对撞机低温系统的概念设计报告,确定了对稀有气体低温混合物更准确的热力学性质模型的需求。学术机构和工业界都发现,在非常低的温度下使用的混合物缺乏可靠的状态方程。如果没有精确的流体特性,就无法进行详细的低温结构建模和设计。因此,氦-氖方程是这项工作的第一个目标,并进一步扩展到粒子物理需求之外的其他有利于科学和工业应用的流体。氦-氖、氖-氩和氦-氩的稀有气体混合物的性质用亥姆霍兹能量中明确的状态方程精确建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.90
自引率
11.60%
发文量
14
审稿时长
>12 weeks
期刊介绍: The Journal of Physical and Chemical Reference Data (JPCRD) is published by AIP Publishing for the U.S. Department of Commerce National Institute of Standards and Technology (NIST). The journal provides critically evaluated physical and chemical property data, fully documented as to the original sources and the criteria used for evaluation, preferably with uncertainty analysis. Critical reviews may also be included if they document a reference database, review the data situation in a field, review reference-quality measurement techniques, or review data evaluation methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信