Stickelberger series and Main Conjecture for function fields

IF 0.8 3区 数学 Q2 MATHEMATICS
A. Bandini, E. Coscelli
{"title":"Stickelberger series and Main Conjecture for function fields","authors":"A. Bandini, E. Coscelli","doi":"10.5565/PUBLMAT6522103","DOIUrl":null,"url":null,"abstract":"Let F be a global function field of characteristic p with ring of integers A and let \\Phi be a Hayes module on the Hilbert class field H(A) of F. We prove an Iwasawa Main Conjecture for the Z_p^\\infty-extension F/F generated by the \\mathfrak{p}-power torsion of \\Phi (\\mathfrak{p} a prime of A). The main tool is a Stickelberger series whose specialization provides a generator for the Fitting ideal of the class group of F. Moreover we prove that the same series, evaluated at complex or p-adic characters, interpolates the Goss Zeta-function or some p-adic L-function, thus providing the link between the algebraic structure (class groups) and the analytic functions, which is the crucial part of Iwasawa Main Conjecture.","PeriodicalId":54531,"journal":{"name":"Publicacions Matematiques","volume":"1 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publicacions Matematiques","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5565/PUBLMAT6522103","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let F be a global function field of characteristic p with ring of integers A and let \Phi be a Hayes module on the Hilbert class field H(A) of F. We prove an Iwasawa Main Conjecture for the Z_p^\infty-extension F/F generated by the \mathfrak{p}-power torsion of \Phi (\mathfrak{p} a prime of A). The main tool is a Stickelberger series whose specialization provides a generator for the Fitting ideal of the class group of F. Moreover we prove that the same series, evaluated at complex or p-adic characters, interpolates the Goss Zeta-function or some p-adic L-function, thus providing the link between the algebraic structure (class groups) and the analytic functions, which is the crucial part of Iwasawa Main Conjecture.
函数域的Stickelberger级数和主要猜想
设F是具有整数环a的特征p的全局函数域,设Phi是F的Hilbert类域H(a)上的Hayes模{p}-powerPhi(\mathfrak{p}a素数a)的扭转。主要工具是Stickelberger级数,其专门化为F的类群的拟合理想提供了生成器。此外,我们证明了在复数或p-adic特征上评估的同一级数对Goss-Zeta函数或一些p-adic L-函数进行插值,从而提供了代数结构(类群)和分析函数之间的联系,这是岩泽主猜想的关键部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
29
审稿时长
>12 weeks
期刊介绍: Publicacions Matemàtiques is a research mathematical journal published by the Department of Mathematics of the Universitat Autònoma de Barcelona since 1976 (before 1988 named Publicacions de la Secció de Matemàtiques, ISSN: 0210-2978 print, 2014-4369 online). Two issues, constituting a single volume, are published each year. The journal has a large circulation being received by more than two hundred libraries all over the world. It is indexed by Mathematical Reviews, Zentralblatt Math., Science Citation Index, SciSearch®, ISI Alerting Services, COMPUMATH Citation Index®, and it participates in the Euclid Project and JSTOR. Free access is provided to all published papers through the web page. Publicacions Matemàtiques is a non-profit university journal which gives special attention to the authors during the whole editorial process. In 2019, the average time between the reception of a paper and its publication was twenty-two months, and the average time between the acceptance of a paper and its publication was fifteen months. The journal keeps on receiving a large number of submissions, so the authors should be warned that currently only articles with excellent reports can be accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信