Stickelberger series and Main Conjecture for function fields

Pub Date : 2021-03-17 DOI:10.5565/PUBLMAT6522103
A. Bandini, E. Coscelli
{"title":"Stickelberger series and Main Conjecture for function fields","authors":"A. Bandini, E. Coscelli","doi":"10.5565/PUBLMAT6522103","DOIUrl":null,"url":null,"abstract":"Let F be a global function field of characteristic p with ring of integers A and let \\Phi be a Hayes module on the Hilbert class field H(A) of F. We prove an Iwasawa Main Conjecture for the Z_p^\\infty-extension F/F generated by the \\mathfrak{p}-power torsion of \\Phi (\\mathfrak{p} a prime of A). The main tool is a Stickelberger series whose specialization provides a generator for the Fitting ideal of the class group of F. Moreover we prove that the same series, evaluated at complex or p-adic characters, interpolates the Goss Zeta-function or some p-adic L-function, thus providing the link between the algebraic structure (class groups) and the analytic functions, which is the crucial part of Iwasawa Main Conjecture.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5565/PUBLMAT6522103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let F be a global function field of characteristic p with ring of integers A and let \Phi be a Hayes module on the Hilbert class field H(A) of F. We prove an Iwasawa Main Conjecture for the Z_p^\infty-extension F/F generated by the \mathfrak{p}-power torsion of \Phi (\mathfrak{p} a prime of A). The main tool is a Stickelberger series whose specialization provides a generator for the Fitting ideal of the class group of F. Moreover we prove that the same series, evaluated at complex or p-adic characters, interpolates the Goss Zeta-function or some p-adic L-function, thus providing the link between the algebraic structure (class groups) and the analytic functions, which is the crucial part of Iwasawa Main Conjecture.
分享
查看原文
函数域的Stickelberger级数和主要猜想
设F是具有整数环a的特征p的全局函数域,设Phi是F的Hilbert类域H(a)上的Hayes模{p}-powerPhi(\mathfrak{p}a素数a)的扭转。主要工具是Stickelberger级数,其专门化为F的类群的拟合理想提供了生成器。此外,我们证明了在复数或p-adic特征上评估的同一级数对Goss-Zeta函数或一些p-adic L-函数进行插值,从而提供了代数结构(类群)和分析函数之间的联系,这是岩泽主猜想的关键部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信