Jia Cui, Can Yang, Jinliang Zhang, Sisi Tian, Jiayi Liu, Wenjun Xu
{"title":"Robotic disassembly sequence planning considering parts failure features","authors":"Jia Cui, Can Yang, Jinliang Zhang, Sisi Tian, Jiayi Liu, Wenjun Xu","doi":"10.1049/cim2.12074","DOIUrl":null,"url":null,"abstract":"<p>Disassembly is an important step in remanufacturing products. Robotic disassembly helps to improve disassembly efficiency. However, the end-of-life products often have the parts with uncertain quality, which is manifested as wear, fracture, deformation, corrosion, and other failure features. The parts failure features always have impacts on disassembly process. First, the evaluation method of parts failure features is researched, and the quantitative model of parts failure features is constructed using fuzzy models. Then, the disassembly information model is established by considering the influence of different failure degrees on the robotic disassembly process. Afterwards, to generate the optimal disassembly solution, deep reinforcement learning (DRL) is used to solve robotic disassembly sequence planning problem which considers parts failure features. Considering the influence of parts failure features on robotic disassembly time, the states, actions and rewards and environment are designed in DRL. Finally, a case study of the double shaft coupling as a waste product is carried out, and the proposed method is compared with the other methods to verify the effectiveness.</p>","PeriodicalId":33286,"journal":{"name":"IET Collaborative Intelligent Manufacturing","volume":"5 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cim2.12074","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Collaborative Intelligent Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cim2.12074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 1
Abstract
Disassembly is an important step in remanufacturing products. Robotic disassembly helps to improve disassembly efficiency. However, the end-of-life products often have the parts with uncertain quality, which is manifested as wear, fracture, deformation, corrosion, and other failure features. The parts failure features always have impacts on disassembly process. First, the evaluation method of parts failure features is researched, and the quantitative model of parts failure features is constructed using fuzzy models. Then, the disassembly information model is established by considering the influence of different failure degrees on the robotic disassembly process. Afterwards, to generate the optimal disassembly solution, deep reinforcement learning (DRL) is used to solve robotic disassembly sequence planning problem which considers parts failure features. Considering the influence of parts failure features on robotic disassembly time, the states, actions and rewards and environment are designed in DRL. Finally, a case study of the double shaft coupling as a waste product is carried out, and the proposed method is compared with the other methods to verify the effectiveness.
期刊介绍:
IET Collaborative Intelligent Manufacturing is a Gold Open Access journal that focuses on the development of efficient and adaptive production and distribution systems. It aims to meet the ever-changing market demands by publishing original research on methodologies and techniques for the application of intelligence, data science, and emerging information and communication technologies in various aspects of manufacturing, such as design, modeling, simulation, planning, and optimization of products, processes, production, and assembly.
The journal is indexed in COMPENDEX (Elsevier), Directory of Open Access Journals (DOAJ), Emerging Sources Citation Index (Clarivate Analytics), INSPEC (IET), SCOPUS (Elsevier) and Web of Science (Clarivate Analytics).