Some variants of fibre contraction principle and applications: from existence to the convergence of successive approximations

Pub Date : 2021-07-01 DOI:10.24193/fpt-ro.2021.2.52
A. Petruşel, I. Rus, M. Serban
{"title":"Some variants of fibre contraction principle and applications: from existence to the convergence of successive approximations","authors":"A. Petruşel, I. Rus, M. Serban","doi":"10.24193/fpt-ro.2021.2.52","DOIUrl":null,"url":null,"abstract":"Let (X1,→) and (X2, ↪→) be two L-spaces, U be a nonempty subset of X1×X2 such that Ux1 := {x2 ∈ X2 | (x1, x2) ∈ U} is nonempty, for each x1 ∈ X1. Let T1 : X1 → X1, T2 : U → X2 be two operators and T : U → X1 ×X2 defined by T (x1, x2) := (T1(x1), T2(x1, x2)). If we suppose that T (U) ⊂ U , FT1 6= ∅ and FT2(x1,·) 6= ∅ for each x1 ∈ X1, the problem is in which additional conditions T is a weakly Picard operator ? In this paper we study this problem in the case when the convergence structures on X1 and X2 are defined by metrics. Some applications to the fixed point equations on spaces of continuous functions are also given.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.24193/fpt-ro.2021.2.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Let (X1,→) and (X2, ↪→) be two L-spaces, U be a nonempty subset of X1×X2 such that Ux1 := {x2 ∈ X2 | (x1, x2) ∈ U} is nonempty, for each x1 ∈ X1. Let T1 : X1 → X1, T2 : U → X2 be two operators and T : U → X1 ×X2 defined by T (x1, x2) := (T1(x1), T2(x1, x2)). If we suppose that T (U) ⊂ U , FT1 6= ∅ and FT2(x1,·) 6= ∅ for each x1 ∈ X1, the problem is in which additional conditions T is a weakly Picard operator ? In this paper we study this problem in the case when the convergence structures on X1 and X2 are defined by metrics. Some applications to the fixed point equations on spaces of continuous functions are also given.
分享
查看原文
纤维收缩原理的一些变体及其应用:从逐次逼近的存在到收敛
设(X1,→)和(X2,“previous→”)是两个l -空间,U是X1×X2的非空子集,使得对于每个X1∈X1, Ux1:= {X2∈X2 | (X1, X2)∈U}是非空的。设T1: X1→X1, T2: U→X2为两个算子,T: U→X1 ×X2定义为T (X1, X2):= (T1(X1), T2(X1, X2))。如果我们假设T (U)∧U, FT1 6=∅,FT2(x1,·)6=∅,对于每个x1∈x1,问题是在哪些附加条件下T是弱皮卡德算子?本文研究了X1和X2上的收敛结构由度量定义的情况下的这一问题。给出了连续函数空间上不动点方程的一些应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信