Pull-Back of Metric Currents and Homological Boundedness of BLD-Elliptic Spaces

Pub Date : 2018-09-09 DOI:10.1515/agms-2019-0011
Pekka Pankka, Elefterios Soultanis
{"title":"Pull-Back of Metric Currents and Homological Boundedness of BLD-Elliptic Spaces","authors":"Pekka Pankka, Elefterios Soultanis","doi":"10.1515/agms-2019-0011","DOIUrl":null,"url":null,"abstract":"Abstract Using the duality of metric currents and polylipschitz forms, we show that a BLD-mapping f : X → Y between oriented cohomology manifolds X and Y induces a pull-back operator f* : Mk,loc(Y) → Mk,loc(X) between the spaces of metric k-currents of locally finite mass. For proper maps, the pull-back is a right-inverse (up to multiplicity) of the push-forward f* : Mk,loc(X) → Mk,loc(Y). As an application we obtain a non-smooth version of the cohomological boundedness theorem of Bonk and Heinonen for locally Lipschitz contractible cohomology n-manifolds X admitting a BLD-mapping ℝn → X.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/agms-2019-0011","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2019-0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract Using the duality of metric currents and polylipschitz forms, we show that a BLD-mapping f : X → Y between oriented cohomology manifolds X and Y induces a pull-back operator f* : Mk,loc(Y) → Mk,loc(X) between the spaces of metric k-currents of locally finite mass. For proper maps, the pull-back is a right-inverse (up to multiplicity) of the push-forward f* : Mk,loc(X) → Mk,loc(Y). As an application we obtain a non-smooth version of the cohomological boundedness theorem of Bonk and Heinonen for locally Lipschitz contractible cohomology n-manifolds X admitting a BLD-mapping ℝn → X.
分享
查看原文
度量电流的回拉与bld -椭圆空间的同调有界性
摘要利用度量电流和polyipschitz形式的对偶性,我们证明了一个BLD映射f:X→ Y在有向上同调流形X和Y之间诱导拉回算子f*:Mk,loc(Y)→ Mk,loc(X)在局部有限质量的度量k-流的空间之间。对于适当的映射,拉回是向前推进f*的右逆(高达多重):Mk,loc(X)→ Mk,loc(Y)。作为一个应用,我们得到了局部Lipschitz可压缩上同调n-流形X的Bonk和Heinonen上同调有界性定理的一个非光滑版本,该定理允许BLD映射ℝn→ 十、
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信