{"title":"Boolean Complexes of Involutions","authors":"Axel Hultman, Vincent Umutabazi","doi":"10.1007/s00026-022-00629-9","DOIUrl":null,"url":null,"abstract":"<div><p>Let (<i>W</i>, <i>S</i>) be a Coxeter system. We introduce the boolean complex of involutions of <i>W</i> which is an analogue of the boolean complex of <i>W</i> studied by Ragnarsson and Tenner. By applying discrete Morse theory, we determine the homotopy type of the boolean complex of involutions for a large class of (<i>W</i>, <i>S</i>), including all finite Coxeter groups, finding that the homotopy type is that of a wedge of spheres of dimension <span>\\(\\vert S\\vert -1\\)</span>. In addition, we find simple recurrence formulas for the number of spheres in the wedge.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00026-022-00629-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00026-022-00629-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let (W, S) be a Coxeter system. We introduce the boolean complex of involutions of W which is an analogue of the boolean complex of W studied by Ragnarsson and Tenner. By applying discrete Morse theory, we determine the homotopy type of the boolean complex of involutions for a large class of (W, S), including all finite Coxeter groups, finding that the homotopy type is that of a wedge of spheres of dimension \(\vert S\vert -1\). In addition, we find simple recurrence formulas for the number of spheres in the wedge.