Boolean Complexes of Involutions

Pub Date : 2022-12-28 DOI:10.1007/s00026-022-00629-9
Axel Hultman, Vincent Umutabazi
{"title":"Boolean Complexes of Involutions","authors":"Axel Hultman,&nbsp;Vincent Umutabazi","doi":"10.1007/s00026-022-00629-9","DOIUrl":null,"url":null,"abstract":"<div><p>Let (<i>W</i>, <i>S</i>) be a Coxeter system. We introduce the boolean complex of involutions of <i>W</i> which is an analogue of the boolean complex of <i>W</i> studied by Ragnarsson and Tenner. By applying discrete Morse theory, we determine the homotopy type of the boolean complex of involutions for a large class of (<i>W</i>, <i>S</i>), including all finite Coxeter groups, finding that the homotopy type is that of a wedge of spheres of dimension <span>\\(\\vert S\\vert -1\\)</span>. In addition, we find simple recurrence formulas for the number of spheres in the wedge.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00026-022-00629-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00026-022-00629-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let (WS) be a Coxeter system. We introduce the boolean complex of involutions of W which is an analogue of the boolean complex of W studied by Ragnarsson and Tenner. By applying discrete Morse theory, we determine the homotopy type of the boolean complex of involutions for a large class of (WS), including all finite Coxeter groups, finding that the homotopy type is that of a wedge of spheres of dimension \(\vert S\vert -1\). In addition, we find simple recurrence formulas for the number of spheres in the wedge.

Abstract Image

分享
查看原文
对合的布尔复形
设(W,S)是一个Coxeter系统。我们引入了W的对合布尔复形,它是Ragnarsson和Tenner研究的W的布尔复形的一个类似物。通过应用离散Morse理论,我们确定了一大类(W,S)(包括所有有限Coxeter群)对合布尔复形的同伦型,发现该同伦型是一个维数为\(\vert S\vert-1\)的球楔的同伦类型。此外,我们还找到了楔中球体数量的简单递推公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信