A note on local minimizers of energy on complete manifolds

IF 0.7 4区 数学 Q2 MATHEMATICS
M. Batista, José I. Santos
{"title":"A note on local minimizers of energy on complete manifolds","authors":"M. Batista, José I. Santos","doi":"10.12775/tmna.2022.013","DOIUrl":null,"url":null,"abstract":"In this paper, we study the geometric rigidity of complete Riemannian manifolds admitting local minimizers of energy functionals.\nMore precisely, assuming the existence of a non-trivial local minimizer and under suitable assumptions, a Riemannian manifold under consideration must be\na product manifold furnished with a warped metric.\nSecondly, under similar hypotheses, we deduce a geometrical splitting in\nthe same fashion as in the Cheeger-Gromoll splitting theorem and we also get information about local minimizers.","PeriodicalId":23130,"journal":{"name":"Topological Methods in Nonlinear Analysis","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topological Methods in Nonlinear Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.12775/tmna.2022.013","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we study the geometric rigidity of complete Riemannian manifolds admitting local minimizers of energy functionals. More precisely, assuming the existence of a non-trivial local minimizer and under suitable assumptions, a Riemannian manifold under consideration must be a product manifold furnished with a warped metric. Secondly, under similar hypotheses, we deduce a geometrical splitting in the same fashion as in the Cheeger-Gromoll splitting theorem and we also get information about local minimizers.
关于完全流形上能量的局部极小值的注记
在本文中,我们研究了完全黎曼流形的几何刚度,它允许能量泛函的局部极小值。更准确地说,假设存在一个非平凡的局部极小子,并且在适当的假设下,所考虑的黎曼流形必须是一个具有翘曲度量的乘积流形。其次,在类似的假设下,我们以与Cheeger-Gromoll分裂定理相同的方式推导了几何分裂,并且我们还得到了关于局部极小值的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
57
审稿时长
>12 weeks
期刊介绍: Topological Methods in Nonlinear Analysis (TMNA) publishes research and survey papers on a wide range of nonlinear analysis, giving preference to those that employ topological methods. Papers in topology that are of interest in the treatment of nonlinear problems may also be included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信