{"title":"A New Method for Building-Level Population Estimation by Integrating LiDAR, Nighttime Light, and POI Data","authors":"Hongxing Chen, Bin Wu, Bailang Yu, Zuoqi Chen, Qiusheng Wu, Ting Lian, Congxiao Wang, Qiaoxuan Li, Jianping Wu","doi":"10.34133/2021/9803796","DOIUrl":null,"url":null,"abstract":"Building-level population data are of vital importance in disaster management, homeland security, and public health. Remotely sensed data, especially LiDAR data, which allow measures of three-dimensional morphological information, have been shown to be useful for fine-scale population estimations. However, studies using LiDAR data for population estimation have noted a nonstationary relationship between LiDAR-derived morphological indicators and populations due to the unbalanced characteristic of population distribution. In this article, we proposed a framework to estimate population at the building level by integrating POI data, nighttime light (NTL) data, and LiDAR data. Building objects were first derived using LiDAR data and aerial photographs. Then, three categories of building-level features, including geometric features, nighttime light intensity features, and POI features, were, respectively, extracted from LiDAR data, Luojia1-01 NTL data, and POI data. Finally, a well-trained random forest model was built to estimate the population of each individual building. Huangpu District in Shanghai, China, was chosen to validate the proposed method. A comparison between the estimation result and reference data shows that the proposed method achieved a good accuracy with at the building level and at the community level. The NTL radiance intensity was found to have a positive relationship with population in residential areas, while a negative relationship was found in office and commercial areas. Our study has shown that by integrating both the three-dimensional morphological information derived from LiDAR data and the human activity information extracted from POI and NTL data, the accuracy of building-level population estimation can be improved.","PeriodicalId":38304,"journal":{"name":"遥感学报","volume":"2021 1","pages":"1-17"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"遥感学报","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.34133/2021/9803796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
Building-level population data are of vital importance in disaster management, homeland security, and public health. Remotely sensed data, especially LiDAR data, which allow measures of three-dimensional morphological information, have been shown to be useful for fine-scale population estimations. However, studies using LiDAR data for population estimation have noted a nonstationary relationship between LiDAR-derived morphological indicators and populations due to the unbalanced characteristic of population distribution. In this article, we proposed a framework to estimate population at the building level by integrating POI data, nighttime light (NTL) data, and LiDAR data. Building objects were first derived using LiDAR data and aerial photographs. Then, three categories of building-level features, including geometric features, nighttime light intensity features, and POI features, were, respectively, extracted from LiDAR data, Luojia1-01 NTL data, and POI data. Finally, a well-trained random forest model was built to estimate the population of each individual building. Huangpu District in Shanghai, China, was chosen to validate the proposed method. A comparison between the estimation result and reference data shows that the proposed method achieved a good accuracy with at the building level and at the community level. The NTL radiance intensity was found to have a positive relationship with population in residential areas, while a negative relationship was found in office and commercial areas. Our study has shown that by integrating both the three-dimensional morphological information derived from LiDAR data and the human activity information extracted from POI and NTL data, the accuracy of building-level population estimation can be improved.
遥感学报Social Sciences-Geography, Planning and Development
CiteScore
3.60
自引率
0.00%
发文量
3200
期刊介绍:
The predecessor of Journal of Remote Sensing is Remote Sensing of Environment, which was founded in 1986. It was born in the beginning of China's remote sensing career and is the first remote sensing journal that has grown up with the development of China's remote sensing career. Since its inception, the Journal of Remote Sensing has published a large number of the latest scientific research results in China and the results of nationally-supported research projects in the light of the priorities and needs of China's remote sensing endeavours at different times, playing a great role in the development of remote sensing science and technology and the cultivation of talents in China, and becoming the most influential academic journal in the field of remote sensing and geographic information science in China.
As the only national comprehensive academic journal in the field of remote sensing in China, Journal of Remote Sensing is dedicated to reporting the research reports, stage-by-stage research briefs and high-level reviews in the field of remote sensing and its related disciplines with international and domestic advanced level. It focuses on new concepts, results and progress in this field. It covers the basic theories of remote sensing, the development of remote sensing technology and the application of remote sensing in the fields of agriculture, forestry, hydrology, geology, mining, oceanography, mapping and other resource and environmental fields as well as in disaster monitoring, research on geographic information systems (GIS), and the integration of remote sensing with GIS and the Global Navigation Satellite System (GNSS) and its applications.