Molecular Simulation and Experimental Study on the Damping and Aging Properties of 4010NA/Hydrogenated Nitrile Butadiene/Nitrile Butadiene Rubber Composites
{"title":"Molecular Simulation and Experimental Study on the Damping and Aging Properties of 4010NA/Hydrogenated Nitrile Butadiene/Nitrile Butadiene Rubber Composites","authors":"Meng Song, Meng Wang, Chaole Wang, Jihong Song, Yunan Li, Fengyi Cao, Guomin Yu, Qi Qin","doi":"10.1002/mats.202200072","DOIUrl":null,"url":null,"abstract":"<p>The effects of <i>N</i>-isopropyl-<i>N</i>′-phenyl-phenylenediamine (4010NA) content on the damping and aging properties of hydrogenated nitrile butadiene rubber (HNBR)/nitrile butadiene rubber (NBR) (abbreviated as H-NBR) matrix are studied via molecular simulation and experiments. The effects of 4010NA addition on the damping and aging properties of H-NBR are analyzed by molecular simulation using solubility parameters (<i>δ</i>), hydrogen bonds, free volume fraction (FFV), binding energy (<i>E</i><sub>binding</sub>), hydrogen bond dissociation energy (<i>ΔG</i>), and mean square displacement (MSD). The damping, mechanical, and thermo-oxygen aging properties of the 4010NA/H-NBR composites are studied experimentally using infrared (FTIR) spectroscopy, X-ray diffraction (XRD), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). The results indicate that 4010NA has good compatibility with HNBR and NBR, and the addition of 4010NA can effectively improve the damping properties of H-NBR. When 4010NA is added at 32 phr, the composite has better damping properties, mechanical properties, and aging resistance, which provides a new insight for the construction of high performance elastomer composites.</p>","PeriodicalId":18157,"journal":{"name":"Macromolecular Theory and Simulations","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mats.202200072","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 1
Abstract
The effects of N-isopropyl-N′-phenyl-phenylenediamine (4010NA) content on the damping and aging properties of hydrogenated nitrile butadiene rubber (HNBR)/nitrile butadiene rubber (NBR) (abbreviated as H-NBR) matrix are studied via molecular simulation and experiments. The effects of 4010NA addition on the damping and aging properties of H-NBR are analyzed by molecular simulation using solubility parameters (δ), hydrogen bonds, free volume fraction (FFV), binding energy (Ebinding), hydrogen bond dissociation energy (ΔG), and mean square displacement (MSD). The damping, mechanical, and thermo-oxygen aging properties of the 4010NA/H-NBR composites are studied experimentally using infrared (FTIR) spectroscopy, X-ray diffraction (XRD), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). The results indicate that 4010NA has good compatibility with HNBR and NBR, and the addition of 4010NA can effectively improve the damping properties of H-NBR. When 4010NA is added at 32 phr, the composite has better damping properties, mechanical properties, and aging resistance, which provides a new insight for the construction of high performance elastomer composites.
期刊介绍:
Macromolecular Theory and Simulations is the only high-quality polymer science journal dedicated exclusively to theory and simulations, covering all aspects from macromolecular theory to advanced computer simulation techniques.