{"title":"High entropy coating from AlCoCrCuFeNi alloy, obtained by laser alloying","authors":"V. Girzhon, V. Yemelianchenko, O. Smolyakov","doi":"10.36547/ams.29.1.1710","DOIUrl":null,"url":null,"abstract":"The structural-phase state of the Al-Co-Cr-Cu-Fe-Ni system high-entropy alloy obtained by laser alloying of technically pure aluminium surface layers was investigated by XRD, EDX and metallographic analyses. It is shown that in the process of laser alloying the formation of an an ordered multicomponent substitution solid solution based on BCC lattice took place, which is typical for high-entropy alloys. The process of heterogeneous crystallization of high-entropy alloys AlCoCrCuFeNi and Al3CoCrCuFeNi was modeled taking into account cooling rates of the melt. It is established that the formation of the obtained structure is a consequence of high cooling rates of the melt and high content of aluminum in the laser alloying zone. The microhardness of the alloyed surface was higher compared to high-entropy alloys of this system obtained under equilibrium conditions and was equal to 6.59 GPa. Additional reasons that may affect the high values of microhardness are analysed.","PeriodicalId":44511,"journal":{"name":"Acta Metallurgica Slovaca","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Metallurgica Slovaca","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36547/ams.29.1.1710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The structural-phase state of the Al-Co-Cr-Cu-Fe-Ni system high-entropy alloy obtained by laser alloying of technically pure aluminium surface layers was investigated by XRD, EDX and metallographic analyses. It is shown that in the process of laser alloying the formation of an an ordered multicomponent substitution solid solution based on BCC lattice took place, which is typical for high-entropy alloys. The process of heterogeneous crystallization of high-entropy alloys AlCoCrCuFeNi and Al3CoCrCuFeNi was modeled taking into account cooling rates of the melt. It is established that the formation of the obtained structure is a consequence of high cooling rates of the melt and high content of aluminum in the laser alloying zone. The microhardness of the alloyed surface was higher compared to high-entropy alloys of this system obtained under equilibrium conditions and was equal to 6.59 GPa. Additional reasons that may affect the high values of microhardness are analysed.