Resolutions of operads via Koszul (bi)algebras

Pub Date : 2022-03-03 DOI:10.1007/s40062-022-00302-1
Pedro Tamaroff
{"title":"Resolutions of operads via Koszul (bi)algebras","authors":"Pedro Tamaroff","doi":"10.1007/s40062-022-00302-1","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce a construction that produces from each bialgebra <i>H</i> an operad <span>\\(\\mathsf {Ass}_H\\)</span> controlling associative algebras in the monoidal category of <i>H</i>-modules or, briefly, <i>H</i>-algebras. When the underlying algebra of this bialgebra is Koszul, we give explicit formulas for the minimal model of this operad depending only on the coproduct of <i>H</i> and the Koszul model of <i>H</i>. This operad is seldom quadratic—and hence does not fall within the reach of Koszul duality theory—so our work provides a new rich family of examples where an explicit minimal model of an operad can be obtained. As an application, we observe that if we take <i>H</i> to be the mod-2 Steenrod algebra <span>\\({\\mathscr {A}}\\)</span>, then this notion of an associative <i>H</i>-algebra coincides with the usual notion of an <span>\\(\\mathscr {A}\\)</span>-algebra considered by homotopy theorists. This makes available to us an operad <span>\\(\\mathsf {Ass}_{{\\mathscr {A}}}\\)</span> along with its minimal model that controls the category of associative <span>\\({\\mathscr {A}}\\)</span>-algebras, and the notion of strong homotopy associative <span>\\({\\mathscr {A}}\\)</span>-algebras.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40062-022-00302-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-022-00302-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a construction that produces from each bialgebra H an operad \(\mathsf {Ass}_H\) controlling associative algebras in the monoidal category of H-modules or, briefly, H-algebras. When the underlying algebra of this bialgebra is Koszul, we give explicit formulas for the minimal model of this operad depending only on the coproduct of H and the Koszul model of H. This operad is seldom quadratic—and hence does not fall within the reach of Koszul duality theory—so our work provides a new rich family of examples where an explicit minimal model of an operad can be obtained. As an application, we observe that if we take H to be the mod-2 Steenrod algebra \({\mathscr {A}}\), then this notion of an associative H-algebra coincides with the usual notion of an \(\mathscr {A}\)-algebra considered by homotopy theorists. This makes available to us an operad \(\mathsf {Ass}_{{\mathscr {A}}}\) along with its minimal model that controls the category of associative \({\mathscr {A}}\)-algebras, and the notion of strong homotopy associative \({\mathscr {A}}\)-algebras.

分享
查看原文
通过Koszul (bi)代数解析操作数
我们引入了一个构造,从每个双代数H产生一个操作符\(\mathsf {Ass}_H\)在H模的一元范畴中控制结合代数,或者简单地说,H代数。当该双代数的基础代数为Koszul时,我们给出了该操作符的最小模型的显式公式,仅依赖于H的余积和H的Koszul模型。该操作符很少是二次的-因此不属于Koszul对偶理论的范围-因此我们的工作提供了一个新的丰富的例子族,其中可以获得操作符的显式最小模型。作为一个应用,我们观察到,如果我们取H为mod2 Steenrod代数\({\mathscr {A}}\),那么这个结合H代数的概念与同伦理论家通常考虑的\(\mathscr {A}\) -代数的概念是一致的。这为我们提供了一个操作符\(\mathsf {Ass}_{{\mathscr {A}}}\)及其最小模型,该模型控制结合\({\mathscr {A}}\) -代数的范畴,以及强同伦结合\({\mathscr {A}}\) -代数的概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信