Amplification of frog calls by reflective leaf substrates: implications for terrestrial and arboreal species

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Matías I. Muñoz, W. Halfwerk
{"title":"Amplification of frog calls by reflective leaf substrates: implications for terrestrial and arboreal species","authors":"Matías I. Muñoz, W. Halfwerk","doi":"10.1080/09524622.2021.1978319","DOIUrl":null,"url":null,"abstract":"ABSTRACT Signal detection is a fundamental requirement for any communicative interaction. Acoustic signals, however, experience amplitude losses during their transmission through the environment, reducing their detection range. Displaying from sites that increase the amplitude of the sound produced, such as cavities or some reflective surfaces, can improve the detectability of signals by distant receivers. We measured the effect of leaf calling sites on the calls of an arboreal (Hyalinobatrachium fleischmanni) and a leaf-litter specialist (Silverstoneia flotator) frog species. We collected the leaves where males of both species were observed calling, and conducted playback experiments to measure their effect on the amplitude of frog calls. Overall, the leaves used by H. fleischmanni and S. flotator were of similar dimensions, and amplified the calls of each species by about 5.0 and 2.5 dB, respectively. The degree of call amplification was unrelated to leaf dimensions or the position of the frogs on the leaves, but explained by the different frequency content of the calls of each species. We suggest that amplification of frogs calls by leaves could represent either a benefit or impose costs for arboreal and terrestrial species, which may depend on the spatial location of intended and unintended receivers.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/09524622.2021.1978319","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

Abstract

ABSTRACT Signal detection is a fundamental requirement for any communicative interaction. Acoustic signals, however, experience amplitude losses during their transmission through the environment, reducing their detection range. Displaying from sites that increase the amplitude of the sound produced, such as cavities or some reflective surfaces, can improve the detectability of signals by distant receivers. We measured the effect of leaf calling sites on the calls of an arboreal (Hyalinobatrachium fleischmanni) and a leaf-litter specialist (Silverstoneia flotator) frog species. We collected the leaves where males of both species were observed calling, and conducted playback experiments to measure their effect on the amplitude of frog calls. Overall, the leaves used by H. fleischmanni and S. flotator were of similar dimensions, and amplified the calls of each species by about 5.0 and 2.5 dB, respectively. The degree of call amplification was unrelated to leaf dimensions or the position of the frogs on the leaves, but explained by the different frequency content of the calls of each species. We suggest that amplification of frogs calls by leaves could represent either a benefit or impose costs for arboreal and terrestrial species, which may depend on the spatial location of intended and unintended receivers.
反射叶片基质对青蛙叫声的放大:对陆生和树栖物种的影响
摘要信号检测是任何交流互动的基本要求。然而,声学信号在通过环境的传输过程中会经历振幅损失,从而降低了其检测范围。从增加所产生声音振幅的位置(如空腔或一些反射表面)进行显示可以提高远程接收器对信号的可检测性。我们测量了树叶鸣叫点对树栖蛙(Hyaliobatrachium fleischmanni)和落叶蛙(Silverstoneia flotator)叫声的影响。我们收集了观察到这两个物种雄性鸣叫的树叶,并进行了回放实验,以测量它们对青蛙鸣叫幅度的影响。总体而言,H.fleischmanni和S.flotator使用的叶片尺寸相似,并分别将每个物种的叫声放大约5.0和2.5 dB。叫声放大的程度与叶片尺寸或青蛙在叶片上的位置无关,但可以通过每个物种叫声的不同频率来解释。我们认为,通过树叶放大青蛙的叫声可能会给树栖和陆地物种带来好处,也可能会带来成本,这可能取决于有意和无意接受者的空间位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信