Ride-hailing origin-destination demand prediction with spatiotemporal information fusion

IF 2.7 4区 工程技术 Q2 TRANSPORTATION SCIENCE & TECHNOLOGY
Ning Wang, Liang Zheng, Huitao Shen, Shukai Li
{"title":"Ride-hailing origin-destination demand prediction with spatiotemporal information fusion","authors":"Ning Wang, Liang Zheng, Huitao Shen, Shukai Li","doi":"10.1093/tse/tdad026","DOIUrl":null,"url":null,"abstract":"\n Accurate demand forecasting for online ride-hailing contributes to balancing traffic supply and demand, and improving the service level of ride-hailing platforms. In contrast to previous studies, which have primarily focused on the inflow or outflow demands of each zone, this study proposes a Conditional Generative Adversarial Network with a Wasserstein divergence objective (CWGAN-div) to predict ride-hailing origin-destination (OD) demand matrices. Residual blocks and refined loss functions help to enhance the stability of model training. Interpretable conditional information is employed to capture external spatiotemporal dependencies and guide the model towards generating more precise results. Empirical analysis using ride-hailing data from Manhattan, New York City, demonstrates that our proposed CWGAN-div model can effectively predict the network-wide OD matrix and exhibits strong convergence performance. Comparative experiments also show that the CWGAN-div outperforms other benchmarking methods. Consequently, the proposed model displays potential for network-wide ride-hailing OD demand prediction.","PeriodicalId":52804,"journal":{"name":"Transportation Safety and Environment","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Safety and Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/tse/tdad026","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Accurate demand forecasting for online ride-hailing contributes to balancing traffic supply and demand, and improving the service level of ride-hailing platforms. In contrast to previous studies, which have primarily focused on the inflow or outflow demands of each zone, this study proposes a Conditional Generative Adversarial Network with a Wasserstein divergence objective (CWGAN-div) to predict ride-hailing origin-destination (OD) demand matrices. Residual blocks and refined loss functions help to enhance the stability of model training. Interpretable conditional information is employed to capture external spatiotemporal dependencies and guide the model towards generating more precise results. Empirical analysis using ride-hailing data from Manhattan, New York City, demonstrates that our proposed CWGAN-div model can effectively predict the network-wide OD matrix and exhibits strong convergence performance. Comparative experiments also show that the CWGAN-div outperforms other benchmarking methods. Consequently, the proposed model displays potential for network-wide ride-hailing OD demand prediction.
时空信息融合的叫车始发地需求预测
准确的网约车需求预测有助于平衡交通供需,提高网约车平台的服务水平。以往的研究主要关注每个区域的流入或流出需求,与此相反,本研究提出了一个具有Wasserstein散度目标(CWGAN-div)的条件生成对抗网络来预测网约车出发地(OD)需求矩阵。残差块和精细损失函数有助于增强模型训练的稳定性。可解释的条件信息用于捕获外部时空依赖关系,并指导模型生成更精确的结果。基于纽约曼哈顿网约车数据的实证分析表明,我们提出的CWGAN-div模型可以有效地预测全网络OD矩阵,并具有较强的收敛性能。对比实验也表明CWGAN-div优于其他基准测试方法。因此,所提出的模型显示了全网网约车OD需求预测的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Transportation Safety and Environment
Transportation Safety and Environment TRANSPORTATION SCIENCE & TECHNOLOGY-
CiteScore
3.90
自引率
13.60%
发文量
32
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信