Development of powder bed fusion – laser beam process for AISI 4140, 4340 and 8620 low-alloy steel

IF 1.9 4区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING
W. Hearn, P. Harlin, E. Hryha
{"title":"Development of powder bed fusion – laser beam process for AISI 4140, 4340 and 8620 low-alloy steel","authors":"W. Hearn, P. Harlin, E. Hryha","doi":"10.1080/00325899.2022.2134083","DOIUrl":null,"url":null,"abstract":"ABSTRACT This study focuses on process development and mechanical property evaluation of AISI 4140, 4340 and 8620 low-alloy steel produced by powder bed fusion – laser beam (PBF-LB). Process development found that increasing the build plate preheating temperature to 180°C improved processability, as it mitigated lack of fusion and cold cracking defects. Subsequent mechanical testing found that the low-alloy steels achieved a high ultimate tensile strength (4140:∼1400 MPa, 4340:∼1500 MPa, 8620:∼1100 MPa), impact toughness (4140:∼90–100 J, 4340:∼60–70 J, 8620:∼150–175 J) and elongation (4140:∼14%, 4340:∼14%, 8620:∼14–15%) that met or exceeded the ASTM standards. Mechanical testing also revealed limited directional anisotropy that was attributed to low levels of internal defects (< 0.1%), small grains with weak crystallographic texture and improved tempering due to build plate preheating and post PBF-LB stress relief. This indicates that with adequate process development, low-alloy steels produced by PBF-LB can meet or exceed the performance of conventionally produced alloys.","PeriodicalId":20392,"journal":{"name":"Powder Metallurgy","volume":"55 4","pages":"94 - 106"},"PeriodicalIF":1.9000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/00325899.2022.2134083","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 3

Abstract

ABSTRACT This study focuses on process development and mechanical property evaluation of AISI 4140, 4340 and 8620 low-alloy steel produced by powder bed fusion – laser beam (PBF-LB). Process development found that increasing the build plate preheating temperature to 180°C improved processability, as it mitigated lack of fusion and cold cracking defects. Subsequent mechanical testing found that the low-alloy steels achieved a high ultimate tensile strength (4140:∼1400 MPa, 4340:∼1500 MPa, 8620:∼1100 MPa), impact toughness (4140:∼90–100 J, 4340:∼60–70 J, 8620:∼150–175 J) and elongation (4140:∼14%, 4340:∼14%, 8620:∼14–15%) that met or exceeded the ASTM standards. Mechanical testing also revealed limited directional anisotropy that was attributed to low levels of internal defects (< 0.1%), small grains with weak crystallographic texture and improved tempering due to build plate preheating and post PBF-LB stress relief. This indicates that with adequate process development, low-alloy steels produced by PBF-LB can meet or exceed the performance of conventionally produced alloys.
AISI 4140、4340和8620低合金钢粉末床熔化-激光束工艺的发展
摘要本研究的重点是通过粉末床熔融-激光束(PBF-LB)生产AISI 4140、4340和8620低合金钢的工艺开发和力学性能评估。工艺开发发现,将构建板预热温度提高到180°C可以改善可加工性,因为它减轻了未熔合和冷裂缺陷。随后的机械测试发现,低合金钢达到了较高的极限抗拉强度(4140:~1400 MPa,4340:~1500 MPa,8620:~1100 MPa)、冲击韧性(4140:~90–100 J、4340:~60–70 J、8620:~150–175 J)和伸长率(4140:~14%、4340:~14%、8620:~14–15%)达到或超过ASTM标准。机械测试还显示,有限的方向各向异性归因于低水平的内部缺陷(< 0.1%)、具有弱结晶织构的小晶粒以及由于构建板预热和PBF-LB后应力消除而改善的回火。这表明,随着工艺的充分发展,PBF-LB生产的低合金钢可以达到或超过传统生产的合金的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Powder Metallurgy
Powder Metallurgy 工程技术-冶金工程
CiteScore
2.90
自引率
7.10%
发文量
30
审稿时长
3 months
期刊介绍: Powder Metallurgy is an international journal publishing peer-reviewed original research on the science and practice of powder metallurgy and particulate technology. Coverage includes metallic particulate materials, PM tool materials, hard materials, composites, and novel powder based materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信