Estimation of minimum sample size for identification of the most important features: a case study providing a qualitative B2B sales data set

IF 0.4 Q4 ECONOMICS
M. Bohanec, Dunajska cesta Sl Ljubljana Slovenia Salvirt Ltd., M. K. Borstnar, M. Robnik-Sikonja
{"title":"Estimation of minimum sample size for identification of the most important features: a case study providing a qualitative B2B sales data set","authors":"M. Bohanec, Dunajska cesta Sl Ljubljana Slovenia Salvirt Ltd., M. K. Borstnar, M. Robnik-Sikonja","doi":"10.17535/CRORR.2017.0033","DOIUrl":null,"url":null,"abstract":"An important task in machine learning is to reduce data set dimensionality, which in turn contributes to reducing computational load and data collection costs, while improving human understanding and interpretation of models. We introduce an operational guideline for determining the minimum number of instances sucient to identify correct ranks of features with the highest impact. We conduct tests based on qualitative B2B sales forecasting data. The results show that a relatively small instance subset is sucient for identifying the most important features when rank is not important.","PeriodicalId":44065,"journal":{"name":"Croatian Operational Research Review","volume":"42 3","pages":"515-524"},"PeriodicalIF":0.4000,"publicationDate":"2017-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.17535/CRORR.2017.0033","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Croatian Operational Research Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17535/CRORR.2017.0033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 4

Abstract

An important task in machine learning is to reduce data set dimensionality, which in turn contributes to reducing computational load and data collection costs, while improving human understanding and interpretation of models. We introduce an operational guideline for determining the minimum number of instances sucient to identify correct ranks of features with the highest impact. We conduct tests based on qualitative B2B sales forecasting data. The results show that a relatively small instance subset is sucient for identifying the most important features when rank is not important.
估计最小样本量以识别最重要的特征:提供定性B2B销售数据集的案例研究
机器学习的一个重要任务是降低数据集的维数,这反过来有助于减少计算负荷和数据收集成本,同时提高人类对模型的理解和解释。我们引入了一个操作指南,用于确定最小实例数量,以便确定具有最大影响的特征的正确级别。我们根据定性的B2B销售预测数据进行测试。结果表明,在等级不重要的情况下,相对较小的实例子集可以很好地识别出最重要的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
5
审稿时长
22 weeks
期刊介绍: Croatian Operational Research Review (CRORR) is the journal which publishes original scientific papers from the area of operational research. The purpose is to publish papers from various aspects of operational research (OR) with the aim of presenting scientific ideas that will contribute both to theoretical development and practical application of OR. The scope of the journal covers the following subject areas: linear and non-linear programming, integer programing, combinatorial and discrete optimization, multi-objective programming, stohastic models and optimization, scheduling, macroeconomics, economic theory, game theory, statistics and econometrics, marketing and data analysis, information and decision support systems, banking, finance, insurance, environment, energy, health, neural networks and fuzzy systems, control theory, simulation, practical OR and applications. The audience includes both researchers and practitioners from the area of operations research, applied mathematics, statistics, econometrics, intelligent methods, simulation, and other areas included in the above list of topics. The journal has an international board of editors, consisting of more than 30 editors – university professors from Croatia, Slovenia, USA, Italy, Germany, Austria and other coutries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信