Inverse spectral problem for Jacobi operators and Miura transformation

IF 0.3 Q4 MATHEMATICS
A. Osipov
{"title":"Inverse spectral problem for Jacobi operators and Miura transformation","authors":"A. Osipov","doi":"10.1515/conop-2020-0116","DOIUrl":null,"url":null,"abstract":"Abstract We study a Miura-type transformation between Kac - van Moerbeke (Volterra) and Toda lattices in terms of the inverse spectral problem for Jacobi operators, which appear in the Lax representation for such systems. This inverse problem method, which amounts to reconstruction of the operator from the moments of its Weyl function, can be used in solving initial-boundary value problem for both systems. It is shown that the Miura transformation can be easily described in terms of these moments. Using this description we establish a bijection between the Volterra lattices and the class of Toda lattices which is characterized by positivity of Jacobi operators in their Lax representation. Also, we discuss an implication of the latter result to the spectral theory.","PeriodicalId":53800,"journal":{"name":"Concrete Operators","volume":"11 4","pages":"77 - 89"},"PeriodicalIF":0.3000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/conop-2020-0116","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concrete Operators","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/conop-2020-0116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract We study a Miura-type transformation between Kac - van Moerbeke (Volterra) and Toda lattices in terms of the inverse spectral problem for Jacobi operators, which appear in the Lax representation for such systems. This inverse problem method, which amounts to reconstruction of the operator from the moments of its Weyl function, can be used in solving initial-boundary value problem for both systems. It is shown that the Miura transformation can be easily described in terms of these moments. Using this description we establish a bijection between the Volterra lattices and the class of Toda lattices which is characterized by positivity of Jacobi operators in their Lax representation. Also, we discuss an implication of the latter result to the spectral theory.
Jacobi算子与Miura变换的谱反问题
摘要根据Jacobi算子的逆谱问题,我们研究了Kac-van-Moerbeke(Volterra)和Toda格之间的Miura型变换,该变换出现在这类系统的Lax表示中。这种逆问题方法相当于从算子的Weyl函数的矩重构算子,可以用于求解两个系统的初边值问题。结果表明,三浦变换可以很容易地用这些矩来描述。利用这种描述,我们在Volterra格和Toda格类之间建立了一个双射,其特征是在它们的Lax表示中Jacobi算子的正性。此外,我们还讨论了后一个结果对谱理论的一个启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Concrete Operators
Concrete Operators MATHEMATICS-
CiteScore
1.00
自引率
16.70%
发文量
10
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信