Watchdog malicious node detection and isolation using deep learning for secured communication in MANET

IF 1.7 4区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS
Narmadha A. S., M. S, D. S. N.
{"title":"Watchdog malicious node detection and isolation using deep learning for secured communication in MANET","authors":"Narmadha A. S., M. S, D. S. N.","doi":"10.1080/00051144.2023.2241766","DOIUrl":null,"url":null,"abstract":"Mobile Ad-hoc Networks (MANETs) are wireless networks formed dynamically by connecting or leaving nodes to and from the network without any fixed infrastructure. These categories of wireless networks are susceptible to different attacks based on their dynamic topological structure. Due to this, security is a primary constraint in MANETs to preserve communication between mobile nodes. A Deep Neural Learned Projective Pursuit Regression-based Watchdog Malicious Node Detection and Isolation (DNLPPR-WMNDI) technique is proposed and modelled in this paper to improve the security feature of MANETs. The newly proposed DNLPPR-WMNDI technique initially selects the neighbouring nodes by applying the projection pursuit regression function. In multicasting, the route paths are established through the intermediate node with the help of control commands named RREQ and RREP. After then, Watchdog Malicious Node Detection and Isolation (WMNDI) technique is applied to detect malicious nodes based on the data packet forwarding time. Basically, a malicious node is affected by a node isolation attack. For better communication, a malicious node is isolated from the network and multicast routing is carried out by selecting the next neighbouring node and this improves the communication security. Simulation is done for the developed technique based on different performance metrics.","PeriodicalId":55412,"journal":{"name":"Automatika","volume":"14 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatika","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/00051144.2023.2241766","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 1

Abstract

Mobile Ad-hoc Networks (MANETs) are wireless networks formed dynamically by connecting or leaving nodes to and from the network without any fixed infrastructure. These categories of wireless networks are susceptible to different attacks based on their dynamic topological structure. Due to this, security is a primary constraint in MANETs to preserve communication between mobile nodes. A Deep Neural Learned Projective Pursuit Regression-based Watchdog Malicious Node Detection and Isolation (DNLPPR-WMNDI) technique is proposed and modelled in this paper to improve the security feature of MANETs. The newly proposed DNLPPR-WMNDI technique initially selects the neighbouring nodes by applying the projection pursuit regression function. In multicasting, the route paths are established through the intermediate node with the help of control commands named RREQ and RREP. After then, Watchdog Malicious Node Detection and Isolation (WMNDI) technique is applied to detect malicious nodes based on the data packet forwarding time. Basically, a malicious node is affected by a node isolation attack. For better communication, a malicious node is isolated from the network and multicast routing is carried out by selecting the next neighbouring node and this improves the communication security. Simulation is done for the developed technique based on different performance metrics.
基于深度学习的MANET安全通信看门狗恶意节点检测与隔离
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Automatika
Automatika AUTOMATION & CONTROL SYSTEMS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
4.00
自引率
5.30%
发文量
65
审稿时长
4.5 months
期刊介绍: AUTOMATIKA – Journal for Control, Measurement, Electronics, Computing and Communications is an international scientific journal that publishes scientific and professional papers in the field of automatic control, robotics, measurements, electronics, computing, communications and related areas. Click here for full Focus & Scope. AUTOMATIKA is published since 1960, and since 1991 by KoREMA - Croatian Society for Communications, Computing, Electronics, Measurement and Control, Member of IMEKO and IFAC.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信