The Modelwise Interpolation Property of Semantic Logics

Q2 Arts and Humanities
Z. Gyenis, Zalán Molnár, Övge Öztürk
{"title":"The Modelwise Interpolation Property of Semantic Logics","authors":"Z. Gyenis, Zalán Molnár, Övge Öztürk","doi":"10.18778/0138-0680.2023.09","DOIUrl":null,"url":null,"abstract":"In this paper we introduce the modelwise interpolation property of a logic that states that whenever \\(\\models\\phi\\to\\psi\\) holds for two formulas \\(\\phi\\) and \\(\\psi\\), then for every model \\(\\mathfrak{M}\\) there is an interpolant formula \\(\\chi$ formulated in the intersectionof the vocabularies of \\(\\phi$ and \\(\\psi\\), such that \\(\\mathfrak{M}\\models \\phi\\to\\chi\\) and \\(\\mathfrak{M}\\models\\chi\\to\\psi\\), that is, the interpolant formula in Craig interpolation may vary from model to model. We discuss examples and show that while the \\(n\\)-variable fragment of first order logic and difference logic have no Craig interpolation, they both have the modelwise interpolation property. As an application we connect the modelwise interpolation property with the local Beth definability, and we prove that the modelwise interpolation property of an algebraizable logic can be characterized by a weak form of the superamalgamation property of the class of algebras corresponding to the models of the logic. In particular, the class of finite dimensional cylindric set algebras enjoys this weak form of superamalgamation.","PeriodicalId":38667,"journal":{"name":"Bulletin of the Section of Logic","volume":"66 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Section of Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18778/0138-0680.2023.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we introduce the modelwise interpolation property of a logic that states that whenever \(\models\phi\to\psi\) holds for two formulas \(\phi\) and \(\psi\), then for every model \(\mathfrak{M}\) there is an interpolant formula \(\chi$ formulated in the intersectionof the vocabularies of \(\phi$ and \(\psi\), such that \(\mathfrak{M}\models \phi\to\chi\) and \(\mathfrak{M}\models\chi\to\psi\), that is, the interpolant formula in Craig interpolation may vary from model to model. We discuss examples and show that while the \(n\)-variable fragment of first order logic and difference logic have no Craig interpolation, they both have the modelwise interpolation property. As an application we connect the modelwise interpolation property with the local Beth definability, and we prove that the modelwise interpolation property of an algebraizable logic can be characterized by a weak form of the superamalgamation property of the class of algebras corresponding to the models of the logic. In particular, the class of finite dimensional cylindric set algebras enjoys this weak form of superamalgamation.
语义逻辑的模型插值特性
在本文中,我们引入了一个逻辑的逐模型插值性质,该性质指出,每当\(\models\phi\to\psi\)对两个公式\(\phi\)和\(\psi\,使得\(\mathfrak{M}\models\phi\to\chi\)和\(\math frak{M}\models\chi\to\psi\),即Craig插值中的插值公式可能因模型而异。我们讨论了例子,并证明了一阶逻辑和差分逻辑的\(n)-变量片段没有Craig插值,但它们都具有逐模型插值性质。作为一个应用,我们将模型插值性质与局部Beth可定义性联系起来,并证明了代数逻辑的模型插值性质可以用对应于逻辑模型的代数类的超游戏性质的弱形式来表征。特别地,有限维圆柱集代数类享有这种弱形式的超等距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bulletin of the Section of Logic
Bulletin of the Section of Logic Arts and Humanities-Philosophy
CiteScore
0.90
自引率
0.00%
发文量
15
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信