{"title":"Trace-Class and Nuclear Operators","authors":"C. Kubrusly","doi":"10.1515/conop-2022-0127","DOIUrl":null,"url":null,"abstract":"Abstract This paper explores the long journey from projective tensor products of a pair of Banach spaces, passing through the definition of nuclear operators still on the realm of projective tensor products, to the of notion of trace-class operators on a Hilbert space, and shows how and why these concepts (nuclear and trace-class operators, that is) agree in the end.","PeriodicalId":53800,"journal":{"name":"Concrete Operators","volume":"25 3","pages":"53 - 69"},"PeriodicalIF":0.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concrete Operators","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/conop-2022-0127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract This paper explores the long journey from projective tensor products of a pair of Banach spaces, passing through the definition of nuclear operators still on the realm of projective tensor products, to the of notion of trace-class operators on a Hilbert space, and shows how and why these concepts (nuclear and trace-class operators, that is) agree in the end.