{"title":"Valued fields with a total residue map","authors":"Konstantinos Kartas","doi":"10.1142/s0219061324500053","DOIUrl":null,"url":null,"abstract":"When $k$ is a finite field, Becker-Denef-Lipschitz (1979) observed that the total residue map $\\text{res}:k(\\!(t)\\!)\\to k$, which picks out the constant term of the Laurent series, is definable in the language of rings with a parameter for $t$. Driven by this observation, we study the theory $\\text{VF}_{\\text{res},\\iota}$ of valued fields equipped with a linear form $\\text{res}:K\\to k$ which specializes to the residue map on the valuation ring. We prove that $\\text{VF}_{\\text{res},\\iota}$ does not admit a model companion. In addition, we show that the power series field $(k(\\!(t)\\!),\\text{res})$, equipped with such a total residue map, is undecidable whenever $k$ is an infinite field. As a consequence, we get that $(\\mathbb{C}(\\!(t)\\!), \\text{Res}_0)$ is undecidable, where $\\text{Res}_0:\\mathbb{C}(\\!(t)\\!)\\to \\mathbb{C}:f\\mapsto \\text{Res}_0(f)$ maps $f$ to its complex residue at $0$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219061324500053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
When $k$ is a finite field, Becker-Denef-Lipschitz (1979) observed that the total residue map $\text{res}:k(\!(t)\!)\to k$, which picks out the constant term of the Laurent series, is definable in the language of rings with a parameter for $t$. Driven by this observation, we study the theory $\text{VF}_{\text{res},\iota}$ of valued fields equipped with a linear form $\text{res}:K\to k$ which specializes to the residue map on the valuation ring. We prove that $\text{VF}_{\text{res},\iota}$ does not admit a model companion. In addition, we show that the power series field $(k(\!(t)\!),\text{res})$, equipped with such a total residue map, is undecidable whenever $k$ is an infinite field. As a consequence, we get that $(\mathbb{C}(\!(t)\!), \text{Res}_0)$ is undecidable, where $\text{Res}_0:\mathbb{C}(\!(t)\!)\to \mathbb{C}:f\mapsto \text{Res}_0(f)$ maps $f$ to its complex residue at $0$.