Valued fields with a total residue map

Pub Date : 2022-03-04 DOI:10.1142/s0219061324500053
Konstantinos Kartas
{"title":"Valued fields with a total residue map","authors":"Konstantinos Kartas","doi":"10.1142/s0219061324500053","DOIUrl":null,"url":null,"abstract":"When $k$ is a finite field, Becker-Denef-Lipschitz (1979) observed that the total residue map $\\text{res}:k(\\!(t)\\!)\\to k$, which picks out the constant term of the Laurent series, is definable in the language of rings with a parameter for $t$. Driven by this observation, we study the theory $\\text{VF}_{\\text{res},\\iota}$ of valued fields equipped with a linear form $\\text{res}:K\\to k$ which specializes to the residue map on the valuation ring. We prove that $\\text{VF}_{\\text{res},\\iota}$ does not admit a model companion. In addition, we show that the power series field $(k(\\!(t)\\!),\\text{res})$, equipped with such a total residue map, is undecidable whenever $k$ is an infinite field. As a consequence, we get that $(\\mathbb{C}(\\!(t)\\!), \\text{Res}_0)$ is undecidable, where $\\text{Res}_0:\\mathbb{C}(\\!(t)\\!)\\to \\mathbb{C}:f\\mapsto \\text{Res}_0(f)$ maps $f$ to its complex residue at $0$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219061324500053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

When $k$ is a finite field, Becker-Denef-Lipschitz (1979) observed that the total residue map $\text{res}:k(\!(t)\!)\to k$, which picks out the constant term of the Laurent series, is definable in the language of rings with a parameter for $t$. Driven by this observation, we study the theory $\text{VF}_{\text{res},\iota}$ of valued fields equipped with a linear form $\text{res}:K\to k$ which specializes to the residue map on the valuation ring. We prove that $\text{VF}_{\text{res},\iota}$ does not admit a model companion. In addition, we show that the power series field $(k(\!(t)\!),\text{res})$, equipped with such a total residue map, is undecidable whenever $k$ is an infinite field. As a consequence, we get that $(\mathbb{C}(\!(t)\!), \text{Res}_0)$ is undecidable, where $\text{Res}_0:\mathbb{C}(\!(t)\!)\to \mathbb{C}:f\mapsto \text{Res}_0(f)$ maps $f$ to its complex residue at $0$.
分享
查看原文
具有总残差映射的有值字段
当$k$是有限域时,Becker-Denef Lipschitz(1979)观察到总残差映射$\text{res}:k(\!(t)\!)\to k$,它选取了Laurent级数的常数项,在具有$t$参数的环的语言中是可定义的。在这一观察的推动下,我们研究了$\text理论{VF}_具有线性形式$\text{res}:K\to K$的有值域的{\text},\iota}$,该线性形式专门用于估值环上的残差映射。我们证明$\text{VF}_{\text{res},\iota}$不允许有模型伴侣。此外,我们还证明了幂级数域$(k(\!(t)\!),\text{res})$,只要$k$是一个无限域,它就不可判定。因此,我们得到$(\mathbb{C}(\!(t)\!),\文本{Res}_0)$是不可判定的,其中$\text{Res}_0:\mathbb{C}(\!(t)\!)\to\mathbb{C}:f\mapsto\text{Res}_0(f) $将$f$映射到它在$0$处的复余数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信