On the fundamental group of open Richardson varieties

IF 1.2 3区 数学 Q1 MATHEMATICS
Changzheng Li, F. Sottile, Chi Zhang
{"title":"On the fundamental group of open Richardson varieties","authors":"Changzheng Li, F. Sottile, Chi Zhang","doi":"10.4310/cntp.2023.v17.n1.a3","DOIUrl":null,"url":null,"abstract":"We compute the fundamental group of an open Richardson variety in the manifold of complete flags that corresponds to a partial flag manifold. Rietsch showed that these log Calabi-Yau varieties underlie a Landau-Ginzburg mirror for the Langlands dual partial flag manifold, and our computation verifies a prediction of Hori for this mirror. It is log Calabi-Yau as it isomorphic to the complement of the Knutson-Lam-Speyer anti-canonical divisor for the partial flag manifold. We also determine explicit defining equations for this divisor.","PeriodicalId":55616,"journal":{"name":"Communications in Number Theory and Physics","volume":"1 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Number Theory and Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cntp.2023.v17.n1.a3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We compute the fundamental group of an open Richardson variety in the manifold of complete flags that corresponds to a partial flag manifold. Rietsch showed that these log Calabi-Yau varieties underlie a Landau-Ginzburg mirror for the Langlands dual partial flag manifold, and our computation verifies a prediction of Hori for this mirror. It is log Calabi-Yau as it isomorphic to the complement of the Knutson-Lam-Speyer anti-canonical divisor for the partial flag manifold. We also determine explicit defining equations for this divisor.
论开Richardson变的基本群
我们计算了与部分标志流形相对应的完全标志流形中开的Richardson变量的基本群。Rietsch表明,这些对数Calabi-Yau变体构成了Langlands对偶部分标志流形的Landau-Ginzburg镜像,我们的计算验证了该镜像的Hori预测。它是log Calabi-Yau,因为它同构于部分标志流形的Knutson-Lam-Speyer反正则除数的补。我们还确定了这个除数的显式定义方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Number Theory and Physics
Communications in Number Theory and Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
5.30%
发文量
8
审稿时长
>12 weeks
期刊介绍: Focused on the applications of number theory in the broadest sense to theoretical physics. Offers a forum for communication among researchers in number theory and theoretical physics by publishing primarily research, review, and expository articles regarding the relationship and dynamics between the two fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信