Towards the cosymplectic topology

IF 0.5 Q3 MATHEMATICS
S. Tchuiaga
{"title":"Towards the cosymplectic topology","authors":"S. Tchuiaga","doi":"10.1515/coma-2022-0151","DOIUrl":null,"url":null,"abstract":"Abstract In this article, the cosymplectic analogue of the symplectic flux homomorphism of a compact connected cosymplectic manifold ( M , η , ω ) \\left(M,\\eta ,\\omega ) with ∂ M = ∅ \\partial M=\\varnothing is studied. This is a continuous map with respect to the C 0 {C}^{0} -metric, whose kernel is connected by smooth arcs and coincides with the subgroup of all weakly Hamiltonian diffeomorphisms. We discuss the cosymplectic analogue of the Weinstein’s chart, and derive that the group G η , ω ( M ) {G}_{\\eta ,\\omega }\\left(M) of all cosymplectic diffeomorphisms isotopic to the identity map is locally contractible. A study of an analogue of Polterovich’s regularization process for co-Hamiltonian isotopies follows. Finally, we study Moser’s stability theorems for locally conformal cosymplectic manifolds.","PeriodicalId":42393,"journal":{"name":"Complex Manifolds","volume":"70 14","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Manifolds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/coma-2022-0151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this article, the cosymplectic analogue of the symplectic flux homomorphism of a compact connected cosymplectic manifold ( M , η , ω ) \left(M,\eta ,\omega ) with ∂ M = ∅ \partial M=\varnothing is studied. This is a continuous map with respect to the C 0 {C}^{0} -metric, whose kernel is connected by smooth arcs and coincides with the subgroup of all weakly Hamiltonian diffeomorphisms. We discuss the cosymplectic analogue of the Weinstein’s chart, and derive that the group G η , ω ( M ) {G}_{\eta ,\omega }\left(M) of all cosymplectic diffeomorphisms isotopic to the identity map is locally contractible. A study of an analogue of Polterovich’s regularization process for co-Hamiltonian isotopies follows. Finally, we study Moser’s stability theorems for locally conformal cosymplectic manifolds.
走向共辛拓扑
摘要本文研究了紧连通辛流形(M,η,ω)\left(M,\eta,\omega)的辛通量同态的辛类似,该流形具有M=∅\ partial M=\ varnone。这是一个关于C0{C}^{0}-度量的连续映射,其核由光滑弧连接,并且与所有弱哈密顿微分同胚的子群重合。我们讨论了Weinstein图的共辛类似,并推导出群Gη,ω(M){G}_{\eta,\omega}\left(M)的所有共辛微分同胚对恒等映射是局部可压缩的。以下是对共哈密顿各向同性的Polterovich正则化过程的类似研究。最后,我们研究了局部共形辛流形的Moser稳定性定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Complex Manifolds
Complex Manifolds MATHEMATICS-
CiteScore
1.30
自引率
20.00%
发文量
14
审稿时长
25 weeks
期刊介绍: Complex Manifolds is devoted to the publication of results on these and related topics: Hermitian geometry, Kähler and hyperkähler geometry Calabi-Yau metrics, PDE''s on complex manifolds Generalized complex geometry Deformations of complex structures Twistor theory Geometric flows on complex manifolds Almost complex geometry Quaternionic geometry Geometric theory of analytic functions Holomorphic dynamics Several complex variables Dolbeault cohomology CR geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信