Robust estimation for nonrandomly distributed data

Pub Date : 2022-10-12 DOI:10.1007/s10463-022-00852-4
Shaomin Li, Kangning Wang, Yong Xu
{"title":"Robust estimation for nonrandomly distributed data","authors":"Shaomin Li,&nbsp;Kangning Wang,&nbsp;Yong Xu","doi":"10.1007/s10463-022-00852-4","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, many methodologies for distributed data have been developed. However, there are two problems. First, most of these methods require the data to be randomly and uniformly distributed across different machines. Second, the methods are mainly not robust. To solve these problems, we propose a distributed pilot modal regression estimator, which achieves robustness and can adapt when the data are stored nonrandomly. First, we collect a random pilot sample from different machines; then, we approximate the global MR objective function by a communication-efficient surrogate that can be efficiently evaluated by the pilot sample and the local gradients. The final estimator is obtained by minimizing the surrogate function in the master machine, while the other machines only need to calculate their gradients. Theoretical results show the new estimator is asymptotically efficient as the global MR estimator. Simulation studies illustrate the utility of the proposed approach.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10463-022-00852-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, many methodologies for distributed data have been developed. However, there are two problems. First, most of these methods require the data to be randomly and uniformly distributed across different machines. Second, the methods are mainly not robust. To solve these problems, we propose a distributed pilot modal regression estimator, which achieves robustness and can adapt when the data are stored nonrandomly. First, we collect a random pilot sample from different machines; then, we approximate the global MR objective function by a communication-efficient surrogate that can be efficiently evaluated by the pilot sample and the local gradients. The final estimator is obtained by minimizing the surrogate function in the master machine, while the other machines only need to calculate their gradients. Theoretical results show the new estimator is asymptotically efficient as the global MR estimator. Simulation studies illustrate the utility of the proposed approach.

Abstract Image

分享
查看原文
非随机分布数据的鲁棒估计
近年来,已经开发了许多用于分布式数据的方法。然而,有两个问题。首先,这些方法中的大多数都要求数据随机且均匀地分布在不同的机器上。其次,方法的鲁棒性不强。为了解决这些问题,我们提出了一种分布式导频模态回归估计器,该估计器既具有鲁棒性,又能适应非随机存储的数据。首先,我们从不同的机器上随机收集一个试点样本;然后,我们通过一个通信高效的代理来近似全局MR目标函数,该代理可以由导频样本和局部梯度有效地评估。最终的估计量是通过最小化主机中的代理函数得到的,而其他机器只需要计算它们的梯度。理论结果表明,该估计量作为全局MR估计量是渐近有效的。仿真研究表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信