Error identities for the reaction–convection–diffusion problem and applications to a posteriori error control

IF 0.5 4区 数学 Q4 MATHEMATICS, APPLIED
S. Repin
{"title":"Error identities for the reaction–convection–diffusion problem and applications to a posteriori error control","authors":"S. Repin","doi":"10.1515/rnam-2022-0021","DOIUrl":null,"url":null,"abstract":"Abstract The paper is devoted to a posteriori error identities for the stationary reaction–convection–diffusion problem with mixed Dirichlét–Neumann boundary conditions. They reflect the most general relations between deviations of approximations from the exact solutions and those values that can be observed in a numerical experiment. The identities contain no mesh dependent constants and are valid for any function in the admissible (energy) class. Therefore, the identities and the estimates that follow from them generate universal and fully reliable tools of a posteriori error control.","PeriodicalId":49585,"journal":{"name":"Russian Journal of Numerical Analysis and Mathematical Modelling","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Numerical Analysis and Mathematical Modelling","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/rnam-2022-0021","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The paper is devoted to a posteriori error identities for the stationary reaction–convection–diffusion problem with mixed Dirichlét–Neumann boundary conditions. They reflect the most general relations between deviations of approximations from the exact solutions and those values that can be observed in a numerical experiment. The identities contain no mesh dependent constants and are valid for any function in the admissible (energy) class. Therefore, the identities and the estimates that follow from them generate universal and fully reliable tools of a posteriori error control.
反应-对流-扩散问题的误差恒等式及其在后验误差控制中的应用
研究了一类具有混合dirichl - neumann边界条件的稳态反应-对流-扩散问题的后验误差恒等式。它们反映了从精确解的近似偏差和在数值实验中可以观察到的那些值之间的最一般的关系。恒等式不包含网格相关常数,并且对可容许(能量)类中的任何函数都有效。因此,恒等式和由此产生的估计产生了普遍和完全可靠的后验误差控制工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
16.70%
发文量
31
审稿时长
>12 weeks
期刊介绍: The Russian Journal of Numerical Analysis and Mathematical Modelling, published bimonthly, provides English translations of selected new original Russian papers on the theoretical aspects of numerical analysis and the application of mathematical methods to simulation and modelling. The editorial board, consisting of the most prominent Russian scientists in numerical analysis and mathematical modelling, selects papers on the basis of their high scientific standard, innovative approach and topical interest. Topics: -numerical analysis- numerical linear algebra- finite element methods for PDEs- iterative methods- Monte-Carlo methods- mathematical modelling and numerical simulation in geophysical hydrodynamics, immunology and medicine, fluid mechanics and electrodynamics, geosciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信