An Intelligent System for Real-Time Condition Monitoring of Tower Cranes

Aaron K. Adik, Wilson Q. Wang
{"title":"An Intelligent System for Real-Time Condition Monitoring of Tower Cranes","authors":"Aaron K. Adik, Wilson Q. Wang","doi":"10.4236/ica.2019.104011","DOIUrl":null,"url":null,"abstract":"Reliability and safety are major issues in tower crane applications. A new adaptive neurofuzzy system is developed in this work for real-time health condition monitoring of tower cranes, especially for hoist gearboxes. Vibration signals are measured using a wireless smart sensor system. Fault detection is performed gear-by-gear in the gearbox. A new diagnostic classifier is proposed to integrate strengths of several signal processing techniques for fault detection. A hybrid machine learning method is proposed to facilitate implementation and improve training convergence. The effectiveness of the developed monitoring system is verified by experimental tests.","PeriodicalId":62904,"journal":{"name":"智能控制与自动化(英文)","volume":"64 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"智能控制与自动化(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/ica.2019.104011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Reliability and safety are major issues in tower crane applications. A new adaptive neurofuzzy system is developed in this work for real-time health condition monitoring of tower cranes, especially for hoist gearboxes. Vibration signals are measured using a wireless smart sensor system. Fault detection is performed gear-by-gear in the gearbox. A new diagnostic classifier is proposed to integrate strengths of several signal processing techniques for fault detection. A hybrid machine learning method is proposed to facilitate implementation and improve training convergence. The effectiveness of the developed monitoring system is verified by experimental tests.
塔式起重机智能状态实时监测系统
可靠性和安全性是塔式起重机应用中的主要问题。本文开发了一种新的自适应神经模糊系统,用于塔式起重机,特别是起重齿轮箱的实时健康状况监测。使用无线智能传感器系统测量振动信号。故障检测是在齿轮箱中逐齿轮执行的。提出了一种新的诊断分类器,以整合几种信号处理技术的优势进行故障检测。提出了一种混合机器学习方法,以便于实现并提高训练收敛性。实验验证了所开发的监测系统的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
243
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信