Integrability in a Nonlinear Model of Swing Oscillatory Motion

Pub Date : 2023-03-30 DOI:10.7546/jgsp-65-2023-93-108
S. Nikolov, V. Vassilev
{"title":"Integrability in a Nonlinear Model of Swing Oscillatory Motion","authors":"S. Nikolov, V. Vassilev","doi":"10.7546/jgsp-65-2023-93-108","DOIUrl":null,"url":null,"abstract":"Nonlinear dynamical systems can be studied in many different directions: i)~finding integrable cases and their analytical solutions, ii)~investigating the algebraic nature of the integrability, iii)~topological analysis of integrable systems, and so on. The aim of the present paper is to find integrable cases of a dynamical system describing the rider and the swing pumped (from the seated position) as a compound pendulum. As a result of our analytical calculations, we can conclude that this system has two integrable cases when: 1)~the dumbbell lengths and point-masses meet a special condition; 2)~the gravitational force is neglected.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/jgsp-65-2023-93-108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nonlinear dynamical systems can be studied in many different directions: i)~finding integrable cases and their analytical solutions, ii)~investigating the algebraic nature of the integrability, iii)~topological analysis of integrable systems, and so on. The aim of the present paper is to find integrable cases of a dynamical system describing the rider and the swing pumped (from the seated position) as a compound pendulum. As a result of our analytical calculations, we can conclude that this system has two integrable cases when: 1)~the dumbbell lengths and point-masses meet a special condition; 2)~the gravitational force is neglected.
分享
查看原文
摆振运动非线性模型的可积性
非线性动力系统可以从许多不同的方向进行研究:i)~寻找可积情况及其解析解,ii)~研究可积性的代数性质,iii)~可积系统的拓扑分析,等等。本文的目的是找到一个动力学系统的可积情况,该系统将骑车人和秋千(从坐姿)描述为复摆。根据我们的分析计算结果,我们可以得出这个系统有两种可积的情况:1)~哑铃长度和点质量满足一个特殊条件;2) ~忽略了重力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信