{"title":"On Congruent Domination Number of Disjoint and One Point Union of Graphs","authors":"S. Vaidya, H. Vadhel","doi":"10.22342/jims.28.3.1102.251-258","DOIUrl":null,"url":null,"abstract":"A dominating set $D \\subseteq V(G)$ is said to be a congruent dominating set of $G$ if $$\\sum_{v \\in V(G)} d(v) \\equiv 0 \\left( \\bmod\\;\\sum_{v \\in D} d(v)\\right).$$The minimum cardinality of a minimal congruent dominating set of $G$ is called the congruent domination number of $G$ which is denoted by $\\gamma_{cd}(G)$. We establish the bounds on congruent domination number in terms of order of disjoint union of graphs as well as one point union of graphs.","PeriodicalId":42206,"journal":{"name":"Journal of the Indonesian Mathematical Society","volume":"21 21","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Indonesian Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22342/jims.28.3.1102.251-258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
A dominating set $D \subseteq V(G)$ is said to be a congruent dominating set of $G$ if $$\sum_{v \in V(G)} d(v) \equiv 0 \left( \bmod\;\sum_{v \in D} d(v)\right).$$The minimum cardinality of a minimal congruent dominating set of $G$ is called the congruent domination number of $G$ which is denoted by $\gamma_{cd}(G)$. We establish the bounds on congruent domination number in terms of order of disjoint union of graphs as well as one point union of graphs.