On Congruent Domination Number of Disjoint and One Point Union of Graphs

IF 0.3 Q4 MATHEMATICS
S. Vaidya, H. Vadhel
{"title":"On Congruent Domination Number of Disjoint and One Point Union of Graphs","authors":"S. Vaidya, H. Vadhel","doi":"10.22342/jims.28.3.1102.251-258","DOIUrl":null,"url":null,"abstract":"A dominating set $D \\subseteq V(G)$ is said to be a congruent dominating set of $G$ if $$\\sum_{v \\in V(G)} d(v) \\equiv 0 \\left( \\bmod\\;\\sum_{v \\in D} d(v)\\right).$$The minimum cardinality of a minimal congruent dominating set of $G$ is called the congruent domination number of $G$ which is denoted by $\\gamma_{cd}(G)$. We establish the bounds on congruent domination number in terms of order of disjoint union of graphs as well as one point union of graphs.","PeriodicalId":42206,"journal":{"name":"Journal of the Indonesian Mathematical Society","volume":"21 21","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Indonesian Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22342/jims.28.3.1102.251-258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A dominating set $D \subseteq V(G)$ is said to be a congruent dominating set of $G$ if $$\sum_{v \in V(G)} d(v) \equiv 0 \left( \bmod\;\sum_{v \in D} d(v)\right).$$The minimum cardinality of a minimal congruent dominating set of $G$ is called the congruent domination number of $G$ which is denoted by $\gamma_{cd}(G)$. We establish the bounds on congruent domination number in terms of order of disjoint union of graphs as well as one point union of graphs.
关于图的不连接和单点并集的同余控制数
如果$$\sum_{v \in V(G)} d(v) \equiv 0 \left( \bmod\;\sum_{v \in D} d(v)\right).$$,则称支配集$D \subseteq V(G)$为$G$的同余支配集。$G$的最小同余支配集的最小基数称为$G$的同余支配数,用$\gamma_{cd}(G)$表示。从图的不相交并的阶和图的一点并的角度,建立了图的同余支配数的界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
33.30%
发文量
20
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信