Hussaini Syed Mujtaba, T. Feroze, A. Hanan, Haider Ali Shams
{"title":"A CFD investigation of the design variables affecting the performance of finned-tube heat exchangers","authors":"Hussaini Syed Mujtaba, T. Feroze, A. Hanan, Haider Ali Shams","doi":"10.18186/thermal.1333937","DOIUrl":null,"url":null,"abstract":"A wide variety of heating and cooling applications use heat exchangers. The increase in energy prices, the requirement for size reduction, and restriction on greenhouse gas emissions has led to the need for finding ways to develop efficient heat exchangers. A cost-efficient way to enhance the model of a heat exchanger by visualizing the effects of the design parameters is using Computational Fluid Dynamics (CFD). The reason for this exploration was to lead an examination of the varieties/changes in the general intensity move process for a Finned-Tube Heat Exchanger (FTHE), also known as Air Coil Heat Exchanger (ACHE) with a variety of plan boundaries like the quantity of tubes, course of action of tubes, and the material utilized for the intensity exchanger. The widely used heat exchanger that uses refrigerant R314a and air as the working fluids was simulated with different design modifications. The simulated results exhibited as to how the number of tubes, arrangement of coils/tubes, material of tubes, and density / spacing of fins, effects the pressure drop, temperature and velocities profiles, and heat exchangers’ transfer of a heat. The use of copper coils improved the heat transfer by approximately 61% as compared to aluminium coils.","PeriodicalId":45841,"journal":{"name":"Journal of Thermal Engineering","volume":"42 2","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18186/thermal.1333937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
A wide variety of heating and cooling applications use heat exchangers. The increase in energy prices, the requirement for size reduction, and restriction on greenhouse gas emissions has led to the need for finding ways to develop efficient heat exchangers. A cost-efficient way to enhance the model of a heat exchanger by visualizing the effects of the design parameters is using Computational Fluid Dynamics (CFD). The reason for this exploration was to lead an examination of the varieties/changes in the general intensity move process for a Finned-Tube Heat Exchanger (FTHE), also known as Air Coil Heat Exchanger (ACHE) with a variety of plan boundaries like the quantity of tubes, course of action of tubes, and the material utilized for the intensity exchanger. The widely used heat exchanger that uses refrigerant R314a and air as the working fluids was simulated with different design modifications. The simulated results exhibited as to how the number of tubes, arrangement of coils/tubes, material of tubes, and density / spacing of fins, effects the pressure drop, temperature and velocities profiles, and heat exchangers’ transfer of a heat. The use of copper coils improved the heat transfer by approximately 61% as compared to aluminium coils.
期刊介绍:
Journal of Thermal Enginering is aimed at giving a recognized platform to students, researchers, research scholars, teachers, authors and other professionals in the field of research in Thermal Engineering subjects, to publish their original and current research work to a wide, international audience. In order to achieve this goal, we will have applied for SCI-Expanded Index in 2021 after having an Impact Factor in 2020. The aim of the journal, published on behalf of Yildiz Technical University in Istanbul-Turkey, is to not only include actual, original and applied studies prepared on the sciences of heat transfer and thermodynamics, and contribute to the literature of engineering sciences on the national and international areas but also help the development of Mechanical Engineering. Engineers and academicians from disciplines of Power Plant Engineering, Energy Engineering, Building Services Engineering, HVAC Engineering, Solar Engineering, Wind Engineering, Nanoengineering, surface engineering, thin film technologies, and Computer Aided Engineering will be expected to benefit from this journal’s outputs.