A novel multi-scale immuno-epidemiological model of visceral leishmaniasis in dogs

Q2 Agricultural and Biological Sciences
J. Welker, M. Martcheva
{"title":"A novel multi-scale immuno-epidemiological model of visceral leishmaniasis in dogs","authors":"J. Welker, M. Martcheva","doi":"10.11145/J.BIOMATH.2019.01.026","DOIUrl":null,"url":null,"abstract":"Leishmaniasis is a neglected and emerging disease prevalent in Mediterranean and tropical climates. As such, the study and development of new models are of increasing importance. We introduce a new immuno-epidemiological model of visceral leishmaniasis in dogs. The within-host system is based on previously  collected  and published data, showing the movement and proliferation of the parasite in the skin and the bone-marrow, as well as the IgG response. The between-host system structures the infected individuals in  time-since-infection and is of vector-host type. The within-host system has a parasite-free equilibrium and at least one endemic equilibrium, consistent with the fact that infected dogs do not recover without treatment. We compute the basic reproduction number R0 of the immuno-epidemiological model  and provide the existence and stability results of the population-level  disease-free equilibrium. Additionally, we prove existence of an unique  endemic equilibrium when R0 > 1, and evidence of backward bifurcation and existence of multiple endemic equilibria when R0 < 1.","PeriodicalId":52247,"journal":{"name":"Biomath","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomath","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11145/J.BIOMATH.2019.01.026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 3

Abstract

Leishmaniasis is a neglected and emerging disease prevalent in Mediterranean and tropical climates. As such, the study and development of new models are of increasing importance. We introduce a new immuno-epidemiological model of visceral leishmaniasis in dogs. The within-host system is based on previously  collected  and published data, showing the movement and proliferation of the parasite in the skin and the bone-marrow, as well as the IgG response. The between-host system structures the infected individuals in  time-since-infection and is of vector-host type. The within-host system has a parasite-free equilibrium and at least one endemic equilibrium, consistent with the fact that infected dogs do not recover without treatment. We compute the basic reproduction number R0 of the immuno-epidemiological model  and provide the existence and stability results of the population-level  disease-free equilibrium. Additionally, we prove existence of an unique  endemic equilibrium when R0 > 1, and evidence of backward bifurcation and existence of multiple endemic equilibria when R0 < 1.
一种新的犬内脏利什曼病多尺度免疫流行病学模型
利什曼病是地中海和热带气候中流行的一种被忽视的新发疾病。因此,研究和开发新模型变得越来越重要。我们介绍了一种新的免疫流行病学模型内脏利什曼病的狗。宿主内系统是基于先前收集和发表的数据,显示寄生虫在皮肤和骨髓中的运动和增殖,以及IgG反应。宿主间系统是一种媒介宿主系统,以感染后的时间为单位对感染个体进行结构分析。宿主内系统具有无寄生虫平衡和至少一种地方性平衡,这与受感染犬不经治疗就无法康复的事实相一致。我们计算了免疫流行病学模型的基本繁殖数R0,并给出了种群水平无病平衡的存在性和稳定性结果。此外,我们还证明了当R0 < 1时存在一个唯一的地方性平衡,并证明了当R0 < 1时存在向后分叉和多个地方性平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomath
Biomath Agricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
2.20
自引率
0.00%
发文量
6
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信