Mean field limit of Ensemble Square Root filters - discrete and continuous time

IF 1.7 Q2 MATHEMATICS, APPLIED
Theresa Lange, W. Stannat
{"title":"Mean field limit of Ensemble Square Root filters - discrete and continuous time","authors":"Theresa Lange, W. Stannat","doi":"10.3934/FODS.2021003","DOIUrl":null,"url":null,"abstract":"Consider the class of Ensemble Square Root filtering algorithms for the numerical approximation of the posterior distribution of nonlinear Markovian signals partially observed with linear observations corrupted with independent measurement noise. We analyze the asymptotic behavior of these algorithms in the large ensemble limit both in discrete and continuous time. We identify limiting mean-field processes on the level of the ensemble members, prove corresponding propagation of chaos results and derive associated convergence rates in terms of the ensemble size. In continuous time we also identify the stochastic partial differential equation driving the distribution of the mean-field process and perform a comparison with the Kushner-Stratonovich equation.","PeriodicalId":73054,"journal":{"name":"Foundations of data science (Springfield, Mo.)","volume":"50 14","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of data science (Springfield, Mo.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/FODS.2021003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 15

Abstract

Consider the class of Ensemble Square Root filtering algorithms for the numerical approximation of the posterior distribution of nonlinear Markovian signals partially observed with linear observations corrupted with independent measurement noise. We analyze the asymptotic behavior of these algorithms in the large ensemble limit both in discrete and continuous time. We identify limiting mean-field processes on the level of the ensemble members, prove corresponding propagation of chaos results and derive associated convergence rates in terms of the ensemble size. In continuous time we also identify the stochastic partial differential equation driving the distribution of the mean-field process and perform a comparison with the Kushner-Stratonovich equation.
集合平方根滤波器的平均场极限-离散和连续时间
考虑一类集成平方根滤波算法,用于非线性马尔可夫信号部分观测到的后验分布的数值逼近,线性观测被独立测量噪声破坏。我们分析了这些算法在离散时间和连续时间的大集合极限下的渐近行为。我们在集合成员的水平上确定了极限平均场过程,证明了混沌结果的相应传播,并根据集合大小推导了相关的收敛速率。在连续时间条件下,我们还确定了驱动平均场过程分布的随机偏微分方程,并与Kushner-Stratonovich方程进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信