{"title":"Modeling Intraindividual Variability in Three-Level Multilevel Models","authors":"S. Nestler, K. Geukes, M. Back","doi":"10.1027/1614-2241/a000150","DOIUrl":null,"url":null,"abstract":"The mixed-effects location scale model is an extension of a multilevel model for longitudinal data. It allows covariates to affect both the within-subject variance and the between-subject variance (i.e., the intercept variance) beyond their influence on the means. Typically, the model is applied to two-level data (e.g., the repeated measurements of persons), although researchers are often faced with three-level data (e.g., the repeated measurements of persons within specific situations). Here, we describe an extension of the two-level mixed-effects location scale model to such three-level data. Furthermore, we show how the suggested model can be estimated with Bayesian software, and we present the results of a small simulation study that was conducted to investigate the statistical properties of the suggested approach. Finally, we illustrate the approach by presenting an example from a psychological study that employed ecological momentary assessment.","PeriodicalId":18476,"journal":{"name":"Methodology: European Journal of Research Methods for The Behavioral and Social Sciences","volume":"34 8","pages":"95–108"},"PeriodicalIF":2.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methodology: European Journal of Research Methods for The Behavioral and Social Sciences","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1027/1614-2241/a000150","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHOLOGY, MATHEMATICAL","Score":null,"Total":0}
引用次数: 8
Abstract
The mixed-effects location scale model is an extension of a multilevel model for longitudinal data. It allows covariates to affect both the within-subject variance and the between-subject variance (i.e., the intercept variance) beyond their influence on the means. Typically, the model is applied to two-level data (e.g., the repeated measurements of persons), although researchers are often faced with three-level data (e.g., the repeated measurements of persons within specific situations). Here, we describe an extension of the two-level mixed-effects location scale model to such three-level data. Furthermore, we show how the suggested model can be estimated with Bayesian software, and we present the results of a small simulation study that was conducted to investigate the statistical properties of the suggested approach. Finally, we illustrate the approach by presenting an example from a psychological study that employed ecological momentary assessment.