Optimization experiment on eccentric lapping of cylindrical rollers

IF 2.7
Jia Su, Julong Yuan, Sen Zhang, Binghai Lv
{"title":"Optimization experiment on eccentric lapping of cylindrical rollers","authors":"Jia Su,&nbsp;Julong Yuan,&nbsp;Sen Zhang,&nbsp;Binghai Lv","doi":"10.1016/j.npe.2018.09.004","DOIUrl":null,"url":null,"abstract":"<div><p>Cylindrical rollers are important elements of bearings, and their machining accuracy and consistency affect the bearing quality. Using a GCr15 cylindrical roller of <em>Ф</em>11 × 12 as the processing object in this study, the effects of loading pressure, abrasive concentration, and speed combination on cylindrical roller machining precision were investigated using the orthogonal experimental design method on a double-side eccentric pendulum lapping and polishing machine. The machining parameters of the lapping stage were optimized, and the lapping optimal process parameters were determined by S/N response analysis and analysis of variance (ANOVA). The results show that when the experiment was optimized using loading pressure of 10 N/roller, abrasive concentration (3000#Al<sub>2</sub>O<sub>3</sub>) of 20.0 wt%, and rotational speed combination, the material removal rate (MRR) of cylindrical roller reached 0.0896 μm/min; the average roughness of the batch decreased from 0.056 μm to 0.027 μm, 51.8% lower than the original batch average roughness, and the deviation decreased from the initial 0.022 μm to 0.014 μm; the batch average roundness error decreased from 0.47 μm to 0.28 μm, 40.4% lower than the original batch average roundness error, and the deviation decreased from the initial 0.19 μm to 0.038 μm; and the batch average diameter variation decreased from 4.5 μm to about 3.6 μm, 20% lower than the original batch average diameter variation. The double-side eccentric lapping of cylinder rollers does not only lead to improvement in the surface quality and shape accuracy of rollers, but also improvement in the batch consistency.</p></div>","PeriodicalId":87330,"journal":{"name":"Nanotechnology and Precision Engineering","volume":"1 3","pages":"Pages 197-204"},"PeriodicalIF":2.7000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.npe.2018.09.004","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology and Precision Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589554018300060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Cylindrical rollers are important elements of bearings, and their machining accuracy and consistency affect the bearing quality. Using a GCr15 cylindrical roller of Ф11 × 12 as the processing object in this study, the effects of loading pressure, abrasive concentration, and speed combination on cylindrical roller machining precision were investigated using the orthogonal experimental design method on a double-side eccentric pendulum lapping and polishing machine. The machining parameters of the lapping stage were optimized, and the lapping optimal process parameters were determined by S/N response analysis and analysis of variance (ANOVA). The results show that when the experiment was optimized using loading pressure of 10 N/roller, abrasive concentration (3000#Al2O3) of 20.0 wt%, and rotational speed combination, the material removal rate (MRR) of cylindrical roller reached 0.0896 μm/min; the average roughness of the batch decreased from 0.056 μm to 0.027 μm, 51.8% lower than the original batch average roughness, and the deviation decreased from the initial 0.022 μm to 0.014 μm; the batch average roundness error decreased from 0.47 μm to 0.28 μm, 40.4% lower than the original batch average roundness error, and the deviation decreased from the initial 0.19 μm to 0.038 μm; and the batch average diameter variation decreased from 4.5 μm to about 3.6 μm, 20% lower than the original batch average diameter variation. The double-side eccentric lapping of cylinder rollers does not only lead to improvement in the surface quality and shape accuracy of rollers, but also improvement in the batch consistency.

圆柱滚子偏心研磨优化试验
圆柱滚子是轴承的重要元件,其加工精度和一致性影响轴承质量。本研究以Ф11 × 12的GCr15圆柱滚子为加工对象,在双面偏心摆研磨抛光机上,采用正交试验设计方法,研究了加载压力、磨料浓度和转速组合对圆柱滚子加工精度的影响。对研磨阶段的加工参数进行了优化,并通过信噪比响应分析和方差分析确定了研磨的最佳工艺参数。结果表明:当加载压力为10 N/辊、磨料浓度(3000#Al2O3)为20.0 wt%、转速组合优化时,圆柱辊的材料去除率(MRR)达到0.0896 μm/min;批平均粗糙度由0.056 μm减小到0.027 μm,比原批平均粗糙度减小51.8%,偏差由0.022 μm减小到0.014 μm;批平均圆度误差从0.47 μm减小到0.28 μm,比原批平均圆度误差减小了40.4%,偏差从0.19 μm减小到0.038 μm;批平均直径变化由4.5 μm减小到3.6 μm,比原批平均直径变化减小20%。圆柱滚轮的双面偏心研磨不仅提高了滚轮的表面质量和形状精度,而且提高了批量一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信