{"title":"Development of a Deep‐Water Carbonate Ion Concentration Proxy Based on Preservation of Planktonic Foraminifera Shells Quantified by X‐Ray CT Scanning","authors":"S. Iwasaki, K. Kimoto, M. Kučera","doi":"10.1029/2022PA004601","DOIUrl":null,"url":null,"abstract":"The quantitative and objective characterization of dissolution intensity in fossil planktonic foraminiferal shells could be used to reconstruct past changes in bottom water carbonate ion concentration. Among proxies measuring the degree of dissolution of planktonic foraminiferal shells, X‐ray micro‐Computed Tomography (CT) based characterization of apparent shell density appears to have good potential to facilitate quantitative reconstruction of carbonate chemistry. However, unlike the well‐established benthic foraminiferal B/Ca ratio‐based proxy, only a regional calibration of the CT‐based proxy exists based on a limited number of data points covering mainly low‐saturation state waters. Here we determined by CT‐based proxy the shell dissolution intensity of planktonic foraminifera Globigerina bulloides, Globorotalia inflata, Globigerinoides ruber, and Trilobatus sacculifer from a collection of core top samples in the Southern Atlantic covering higher saturation states and assessed the reliability of CT‐based proxy. We observed that the CT‐based proxy is generally controlled by deep‐water Δ[ CO32– ${{\\mathrm{C}\\mathrm{O}}_{3}}^{2\\mbox{--}}$ ] like the B/Ca proxy, but its effective range of Δ[ CO32– ${{\\mathrm{C}\\mathrm{O}}_{3}}^{2\\mbox{--}}$ ] is between −20 and 10 µmolkg−1. In this range, the CT‐based proxy appears directly and strongly related to deep‐water Δ[ CO32– ${{\\mathrm{C}\\mathrm{O}}_{3}}^{2\\mbox{--}}$ ], whereas we note that in some settings, there appears to be a secondary influence on B/Ca which we suggest may be due to elevated alkalinity from carbonate dissolution in sediments. On the other hand, the CT‐based proxy is affected by supralysoclinal dissolution in areas with high productivity. Like the B/Ca proxy, the CT‐based proxy requires species‐specific calibration, but the effect of species‐specific shell difference in susceptibility to dissolution on the proxy is small.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":"17 2","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Paleoceanography and Paleoclimatology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2022PA004601","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The quantitative and objective characterization of dissolution intensity in fossil planktonic foraminiferal shells could be used to reconstruct past changes in bottom water carbonate ion concentration. Among proxies measuring the degree of dissolution of planktonic foraminiferal shells, X‐ray micro‐Computed Tomography (CT) based characterization of apparent shell density appears to have good potential to facilitate quantitative reconstruction of carbonate chemistry. However, unlike the well‐established benthic foraminiferal B/Ca ratio‐based proxy, only a regional calibration of the CT‐based proxy exists based on a limited number of data points covering mainly low‐saturation state waters. Here we determined by CT‐based proxy the shell dissolution intensity of planktonic foraminifera Globigerina bulloides, Globorotalia inflata, Globigerinoides ruber, and Trilobatus sacculifer from a collection of core top samples in the Southern Atlantic covering higher saturation states and assessed the reliability of CT‐based proxy. We observed that the CT‐based proxy is generally controlled by deep‐water Δ[ CO32– ${{\mathrm{C}\mathrm{O}}_{3}}^{2\mbox{--}}$ ] like the B/Ca proxy, but its effective range of Δ[ CO32– ${{\mathrm{C}\mathrm{O}}_{3}}^{2\mbox{--}}$ ] is between −20 and 10 µmolkg−1. In this range, the CT‐based proxy appears directly and strongly related to deep‐water Δ[ CO32– ${{\mathrm{C}\mathrm{O}}_{3}}^{2\mbox{--}}$ ], whereas we note that in some settings, there appears to be a secondary influence on B/Ca which we suggest may be due to elevated alkalinity from carbonate dissolution in sediments. On the other hand, the CT‐based proxy is affected by supralysoclinal dissolution in areas with high productivity. Like the B/Ca proxy, the CT‐based proxy requires species‐specific calibration, but the effect of species‐specific shell difference in susceptibility to dissolution on the proxy is small.
期刊介绍:
Paleoceanography and Paleoclimatology (PALO) publishes papers dealing with records of past environments, biota and climate. Understanding of the Earth system as it was in the past requires the employment of a wide range of approaches including marine and lacustrine sedimentology and speleothems; ice sheet formation and flow; stable isotope, trace element, and organic geochemistry; paleontology and molecular paleontology; evolutionary processes; mineralization in organisms; understanding tree-ring formation; seismic stratigraphy; physical, chemical, and biological oceanography; geochemical, climate and earth system modeling, and many others. The scope of this journal is regional to global, rather than local, and includes studies of any geologic age (Precambrian to Quaternary, including modern analogs). Within this framework, papers on the following topics are to be included: chronology, stratigraphy (where relevant to correlation of paleoceanographic events), paleoreconstructions, paleoceanographic modeling, paleocirculation (deep, intermediate, and shallow), paleoclimatology (e.g., paleowinds and cryosphere history), global sediment and geochemical cycles, anoxia, sea level changes and effects, relations between biotic evolution and paleoceanography, biotic crises, paleobiology (e.g., ecology of “microfossils” used in paleoceanography), techniques and approaches in paleoceanographic inferences, and modern paleoceanographic analogs, and quantitative and integrative analysis of coupled ocean-atmosphere-biosphere processes. Paleoceanographic and Paleoclimate studies enable us to use the past in order to gain information on possible future climatic and biotic developments: the past is the key to the future, just as much and maybe more than the present is the key to the past.