Thick points of the planar GFF are totally disconnected for all γ≠0

IF 1.3 3区 数学 Q2 STATISTICS & PROBABILITY
Juhan Aru, L'eonie Papon, E. Powell
{"title":"Thick points of the planar GFF are totally disconnected for all γ≠0","authors":"Juhan Aru, L'eonie Papon, E. Powell","doi":"10.1214/23-ejp975","DOIUrl":null,"url":null,"abstract":"We prove that the set of $\\gamma$-thick points of a planar Gaussian free field (GFF) with Dirichlet boundary conditions is a.s. totally disconnected for all $\\gamma \\neq 0$. Our proof relies on the coupling between a GFF and the nested CLE$_4$. In particular, we show that the thick points of the GFF are the same as those of the weighted CLE$_4$ nesting field and establish the almost sure total disconnectedness of the complement of a nested CLE$_{\\kappa}$, $\\kappa \\in (8/3,4]$. As a corollary we see that the set of singular points for supercritical LQG metrics is a.s. totally disconnected.","PeriodicalId":50538,"journal":{"name":"Electronic Journal of Probability","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2022-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/23-ejp975","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

Abstract

We prove that the set of $\gamma$-thick points of a planar Gaussian free field (GFF) with Dirichlet boundary conditions is a.s. totally disconnected for all $\gamma \neq 0$. Our proof relies on the coupling between a GFF and the nested CLE$_4$. In particular, we show that the thick points of the GFF are the same as those of the weighted CLE$_4$ nesting field and establish the almost sure total disconnectedness of the complement of a nested CLE$_{\kappa}$, $\kappa \in (8/3,4]$. As a corollary we see that the set of singular points for supercritical LQG metrics is a.s. totally disconnected.
平面GFF的厚点对于所有γ≠0都是完全不连通的
证明了具有Dirichlet边界条件的平面高斯自由场(GFF)的$\gamma$ -厚点集对于所有$\gamma \neq 0$都是完全不连通的。我们的证明依赖于GFF和嵌套CLE $_4$之间的耦合。特别是,我们证明了GFF的粗点与加权CLE $_4$嵌套域的粗点相同,并建立了嵌套CLE补的几乎肯定的完全不连通$_{\kappa}$, $\kappa \in (8/3,4]$。作为一个推论,我们看到超临界LQG指标的奇点集也是完全不连通的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electronic Journal of Probability
Electronic Journal of Probability 数学-统计学与概率论
CiteScore
1.80
自引率
7.10%
发文量
119
审稿时长
4-8 weeks
期刊介绍: The Electronic Journal of Probability publishes full-size research articles in probability theory. The Electronic Communications in Probability (ECP), a sister journal of EJP, publishes short notes and research announcements in probability theory. Both ECP and EJP are official journals of the Institute of Mathematical Statistics and the Bernoulli society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信