{"title":"Improving the formability of sandwich sheets by the hydrostatic effect of encapsulated media","authors":"Yuki Shibuya, Jun Yanagimoto","doi":"10.1007/s12289-023-01768-x","DOIUrl":null,"url":null,"abstract":"<div><p>Various sandwich structures have been developed as lightweight structures. They have excellent specific stiffness owing to their low density. However, owing to the existence of various failure modes, which are classified into core shear failure, tensile fracture of the face sheet, buckling of the face sheet, and delamination, it is difficult to deform sandwich sheets without any failure. A new forming strategy was proposed in this study. Buckling of the face sheet during drawing was suppressed by filling the encapsulated media in a 3D core between the face sheets to exploit its hydrostatic effect. This process is similar to the freeze-bend method, in which the pipe is filled with ice during bending to suppress wrinkles and flattening. Ice, wax, and low-melting alloys were used as the encapsulated media, and their formability and ease of removal were investigated. Further, a shear strength test was performed on the specimens that were cut out from the drawn products to evaluate failure during forming. Based on these experimental results, the characteristics required for the encapsulated media were summarized.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"16 4","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12289-023-01768-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-023-01768-x","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Various sandwich structures have been developed as lightweight structures. They have excellent specific stiffness owing to their low density. However, owing to the existence of various failure modes, which are classified into core shear failure, tensile fracture of the face sheet, buckling of the face sheet, and delamination, it is difficult to deform sandwich sheets without any failure. A new forming strategy was proposed in this study. Buckling of the face sheet during drawing was suppressed by filling the encapsulated media in a 3D core between the face sheets to exploit its hydrostatic effect. This process is similar to the freeze-bend method, in which the pipe is filled with ice during bending to suppress wrinkles and flattening. Ice, wax, and low-melting alloys were used as the encapsulated media, and their formability and ease of removal were investigated. Further, a shear strength test was performed on the specimens that were cut out from the drawn products to evaluate failure during forming. Based on these experimental results, the characteristics required for the encapsulated media were summarized.
期刊介绍:
The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material.
The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations.
All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.