Diagonal complexes for surfaces of finite type and surfaces with involution

IF 0.7 4区 数学 Q2 MATHEMATICS
G. Panina, J. Gordon
{"title":"Diagonal complexes for surfaces of finite type and surfaces with involution","authors":"G. Panina, J. Gordon","doi":"10.1090/spmj/1709","DOIUrl":null,"url":null,"abstract":"<p>Two constructions are studied that are inspired by the ideas of a recent paper by the authors.</p>\n\n<p>— The <italic> diagonal complex</italic> <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper D\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">D</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {D}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and its barycentric subdivision <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper B script upper D\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">B</mml:mi>\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">D</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {BD}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> related to an oriented surface of finite type <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F\">\n <mml:semantics>\n <mml:mi>F</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">F</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> equipped with a number of labeled marked points. This time, unlike the paper mentioned above, boundary components without marked points are allowed, called <italic>holes</italic>.</p>\n\n<p>— The <italic>symmetric diagonal complex</italic> <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper D Superscript i n v\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">D</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>inv</mml:mi>\n </mml:mrow>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {D}^{\\operatorname {inv}}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and its barycentric subdivision <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper B script upper D Superscript i n v\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">B</mml:mi>\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">D</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>inv</mml:mi>\n </mml:mrow>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {BD}^{\\operatorname {inv}}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> related to a <italic>symmetric</italic> (=with an involution) oriented surface <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F\">\n <mml:semantics>\n <mml:mi>F</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">F</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> equipped with a number of (symmetrically placed) labeled marked points.</p>\n\n<p>The symmetric complex is shown to be homotopy equivalent to the complex of a surface obtained by “taking a half” of the initial symmetric surface.</p>","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":"26 S2","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/spmj/1709","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Two constructions are studied that are inspired by the ideas of a recent paper by the authors.

— The diagonal complex D \mathcal {D} and its barycentric subdivision B D \mathcal {BD} related to an oriented surface of finite type F F equipped with a number of labeled marked points. This time, unlike the paper mentioned above, boundary components without marked points are allowed, called holes.

— The symmetric diagonal complex D inv \mathcal {D}^{\operatorname {inv}} and its barycentric subdivision B D inv \mathcal {BD}^{\operatorname {inv}} related to a symmetric (=with an involution) oriented surface F F equipped with a number of (symmetrically placed) labeled marked points.

The symmetric complex is shown to be homotopy equivalent to the complex of a surface obtained by “taking a half” of the initial symmetric surface.

有限型曲面与对合曲面的对角复形
受作者最近一篇论文的启发,研究了两种结构对角线复形D\mathcal{D}及其重心细分B D\mathical{BD}与配备有多个标记点的有限类型F F的有向表面有关。这一次,与上面提到的论文不同,允许没有标记点的边界组件,称为孔。——对称对角复形D inv \mathcal{D}^{\operatorname{inv}}及其重心细分B D inv\mathcal{BD}^}\operator name{inv}与一个对称(=带对合)定向的表面F有关,该表面F配备了许多(对称放置的)标记标记点。对称复形被证明是等价于通过“取”初始对称曲面的一半而获得的曲面的复形的同伦性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
12.50%
发文量
52
审稿时长
>12 weeks
期刊介绍: This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信