Ring-theoretic blowing down II: Birational transformations

IF 0.7 2区 数学 Q2 MATHEMATICS
D.Rogalski, S. J. Sierra, J. T. Stafford
{"title":"Ring-theoretic blowing down II: Birational transformations","authors":"D.Rogalski, S. J. Sierra, J. T. Stafford","doi":"10.4171/jncg/510","DOIUrl":null,"url":null,"abstract":"One of the major open problems in noncommutative algebraic geometry is the classification of noncommutative projective surfaces (or, slightly more generally, of noetherian connected graded domains of Gelfand-Kirillov dimension 3). In a companion paper the authors described a noncommutative version of blowing down and, for example, gave a noncommutative analogue of Castelnuovo's classic theorem that lines of self-intersection (-1) on a smooth surface can be contracted. In this paper we will use these techniques to construct explicit birational transformations between various noncommutative surfaces containing an elliptic curve. Notably we show that Van den Bergh's quadrics can be obtained from the Sklyanin algebra by suitably blowing up and down, and we also provide a noncommutative analogue of the classical Cremona transform. This extends and amplifies earlier work of Presotto and Van den Bergh.","PeriodicalId":54780,"journal":{"name":"Journal of Noncommutative Geometry","volume":"12 12","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Noncommutative Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jncg/510","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

One of the major open problems in noncommutative algebraic geometry is the classification of noncommutative projective surfaces (or, slightly more generally, of noetherian connected graded domains of Gelfand-Kirillov dimension 3). In a companion paper the authors described a noncommutative version of blowing down and, for example, gave a noncommutative analogue of Castelnuovo's classic theorem that lines of self-intersection (-1) on a smooth surface can be contracted. In this paper we will use these techniques to construct explicit birational transformations between various noncommutative surfaces containing an elliptic curve. Notably we show that Van den Bergh's quadrics can be obtained from the Sklyanin algebra by suitably blowing up and down, and we also provide a noncommutative analogue of the classical Cremona transform. This extends and amplifies earlier work of Presotto and Van den Bergh.
环理论吹落II:两族变换
非交换代数几何中的一个主要开放问题是非交换投影曲面的分类(或者,更一般地说,是Gelfand-Kirillov维3的noetherian连通梯度域的分类)。在一篇合著的论文中,作者描述了一个非交换版本的吹落,例如,给出了Castelnuovo经典定理的一个非交换模拟,即光滑表面上的自交(-1)线可以被压缩。在本文中,我们将使用这些技术来构造包含椭圆曲线的各种非交换曲面之间的显式双分变换。值得注意的是,我们证明了Van den Bergh的二次曲面可以通过适当地放大和减小Sklyanin代数得到,并且我们还提供了经典Cremona变换的非交换模拟。这扩展和放大了普雷索托和范登伯格早期的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
11.10%
发文量
30
审稿时长
>12 weeks
期刊介绍: The Journal of Noncommutative Geometry covers the noncommutative world in all its aspects. It is devoted to publication of research articles which represent major advances in the area of noncommutative geometry and its applications to other fields of mathematics and theoretical physics. Topics covered include in particular: Hochschild and cyclic cohomology K-theory and index theory Measure theory and topology of noncommutative spaces, operator algebras Spectral geometry of noncommutative spaces Noncommutative algebraic geometry Hopf algebras and quantum groups Foliations, groupoids, stacks, gerbes Deformations and quantization Noncommutative spaces in number theory and arithmetic geometry Noncommutative geometry in physics: QFT, renormalization, gauge theory, string theory, gravity, mirror symmetry, solid state physics, statistical mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信