Teaching Predictive Audit Data Analytic Techniques: Time-Series Forecasting with Transactional and Exogenous Data

IF 1.6 Q3 BUSINESS, FINANCE
Zhaokai Yan, Deniz Appelbaum, A. Kogan, M. Vasarhelyi
{"title":"Teaching Predictive Audit Data Analytic Techniques: Time-Series Forecasting with Transactional and Exogenous Data","authors":"Zhaokai Yan, Deniz Appelbaum, A. Kogan, M. Vasarhelyi","doi":"10.2308/jeta-2020-018","DOIUrl":null,"url":null,"abstract":"\n Audit data analytics is gaining increasing attention from both audit researchers and practitioners. To provide accounting students with firsthand experience utilizing data analytics, this teaching case showcases the implementation of data analytic techniques to transactional-level data from real-world business practice. Specifically, this case demonstrates the application of seasonal autoregressive integrated moving average (ARIMA) models, utilizing exogenous weather data, to predict daily sales amounts of a wholesale club retailer. The learning objective is to demonstrate this process and teach students to apply predictive data analytics through Python programming and incorporate and utilize exogenous data in sales prediction.","PeriodicalId":45427,"journal":{"name":"Journal of Emerging Technologies in Accounting","volume":"13 5","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Emerging Technologies in Accounting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2308/jeta-2020-018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

Audit data analytics is gaining increasing attention from both audit researchers and practitioners. To provide accounting students with firsthand experience utilizing data analytics, this teaching case showcases the implementation of data analytic techniques to transactional-level data from real-world business practice. Specifically, this case demonstrates the application of seasonal autoregressive integrated moving average (ARIMA) models, utilizing exogenous weather data, to predict daily sales amounts of a wholesale club retailer. The learning objective is to demonstrate this process and teach students to apply predictive data analytics through Python programming and incorporate and utilize exogenous data in sales prediction.
预测审计数据分析技术教学:交易数据和外生数据的时间序列预测
审计数据分析越来越受到审计研究人员和从业人员的关注。为了向会计专业的学生提供使用数据分析的第一手经验,本教学案例展示了将数据分析技术应用于现实世界商业实践中的事务级数据。具体而言,该案例展示了季节自回归综合移动平均(ARIMA)模型的应用,该模型利用外生天气数据来预测批发俱乐部零售商的日销售额。学习目标是演示这一过程,并教学生通过Python编程应用预测数据分析,并在销售预测中纳入和利用外生数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
27.80%
发文量
14
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信