Descent theory and mapping spaces

Pub Date : 2020-07-03 DOI:10.1007/s40062-020-00261-5
Nicholas J. Meadows
{"title":"Descent theory and mapping spaces","authors":"Nicholas J. Meadows","doi":"10.1007/s40062-020-00261-5","DOIUrl":null,"url":null,"abstract":"<p>The purpose of this paper is to develop a theory of <span>\\((\\infty , 1)\\)</span>-stacks, in the sense of Hirschowitz–Simpson’s ‘Descent Pour Les n–Champs’, using the language of quasi-category theory and the author’s local Joyal model structure. The main result is a characterization of <span>\\((\\infty , 1)\\)</span>-stacks in terms of mapping space presheaves. An important special case of this theorem gives a sufficient condition for the presheaf of quasi-categories associated to a presheaf of model categories to be a higher stack. In the final section, we apply this result to construct the higher stack of unbounded complexes associated to a ringed site.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-020-00261-5","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-020-00261-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The purpose of this paper is to develop a theory of \((\infty , 1)\)-stacks, in the sense of Hirschowitz–Simpson’s ‘Descent Pour Les n–Champs’, using the language of quasi-category theory and the author’s local Joyal model structure. The main result is a characterization of \((\infty , 1)\)-stacks in terms of mapping space presheaves. An important special case of this theorem gives a sufficient condition for the presheaf of quasi-categories associated to a presheaf of model categories to be a higher stack. In the final section, we apply this result to construct the higher stack of unbounded complexes associated to a ringed site.

分享
查看原文
下降理论和映射空间
本文的目的是利用拟范畴论的语言和作者的局部Joyal模型结构,在Hirschowitz-Simpson的“Descent Pour Les n-Champs”的意义上发展\((\infty , 1)\) -stacks理论。主要的结果是\((\infty , 1)\) -堆栈在映射空间预帧方面的表征。该定理的一个重要特例给出了与模型类预集相关联的拟类预集是一个更高的堆栈的充分条件。在最后一节中,我们应用这一结果来构建与环状位点相关的无界配合物的更高堆栈。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信