On an oscillatory integral involving a homogeneous form

IF 0.5 Q3 MATHEMATICS
S. Yamagishi
{"title":"On an oscillatory integral involving a homogeneous form","authors":"S. Yamagishi","doi":"10.7169/facm/1775","DOIUrl":null,"url":null,"abstract":"Let $F \\in \\mathbb{R}[x_1, \\ldots, x_n]$ be a homogeneous form of degree $d > 1$ satisfying $(n - \\dim V_{F}^*) > 4$, where $V_F^*$ is the singular locus of $V(F) = \\{ \\mathbf{z} \\in {\\mathbb{C}}^n: F(\\mathbf{z}) = 0 \\}$. Suppose there exists $\\mathbf{x}_0 \\in (0,1)^n \\cap (V(F) \\backslash V_F^*)$. Let $\\mathbf{t} = (t_1, \\ldots, t_n) \\in \\mathbb{R}^n$. Then for a smooth function $\\varpi:\\mathbb{R}^n \\rightarrow \\mathbb{R}$ with its support contained in a small neighbourhood of $\\mathbf{x}_0$, we prove $$ \\Big{|} \\int_{0}^{\\infty} \\cdots \\int_{0}^{\\infty} \\varpi(\\mathbf{x}) x_1^{i t_1} \\cdots x_n^{i t_n} e^{2 \\pi i \\tau F(\\mathbf{x})} d \\mathbf{x} \\Big{|} \\ll \\min \\{ 1, |\\tau|^{-1} \\}, $$ where the implicit constant is independent of $\\tau$ and $\\mathbf{t}$.","PeriodicalId":44655,"journal":{"name":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2018-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7169/facm/1775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Let $F \in \mathbb{R}[x_1, \ldots, x_n]$ be a homogeneous form of degree $d > 1$ satisfying $(n - \dim V_{F}^*) > 4$, where $V_F^*$ is the singular locus of $V(F) = \{ \mathbf{z} \in {\mathbb{C}}^n: F(\mathbf{z}) = 0 \}$. Suppose there exists $\mathbf{x}_0 \in (0,1)^n \cap (V(F) \backslash V_F^*)$. Let $\mathbf{t} = (t_1, \ldots, t_n) \in \mathbb{R}^n$. Then for a smooth function $\varpi:\mathbb{R}^n \rightarrow \mathbb{R}$ with its support contained in a small neighbourhood of $\mathbf{x}_0$, we prove $$ \Big{|} \int_{0}^{\infty} \cdots \int_{0}^{\infty} \varpi(\mathbf{x}) x_1^{i t_1} \cdots x_n^{i t_n} e^{2 \pi i \tau F(\mathbf{x})} d \mathbf{x} \Big{|} \ll \min \{ 1, |\tau|^{-1} \}, $$ where the implicit constant is independent of $\tau$ and $\mathbf{t}$.
关于一个包含齐次形式的振荡积分
设$F \in \mathbb{R}[x_1, \ldots, x_n]$为满足$(n - \dim V_{F}^*) > 4$的次$d > 1$的齐次形式,其中$V_F^*$为$V(F) = \{ \mathbf{z} \in {\mathbb{C}}^n: F(\mathbf{z}) = 0 \}$的奇异轨迹。假设存在$\mathbf{x}_0 \in (0,1)^n \cap (V(F) \backslash V_F^*)$。让$\mathbf{t} = (t_1, \ldots, t_n) \in \mathbb{R}^n$。然后,对于支持包含在$\mathbf{x}_0$的小邻域内的光滑函数$\varpi:\mathbb{R}^n \rightarrow \mathbb{R}$,证明了其隐式常数与$\tau$和$\mathbf{t}$无关的$$ \Big{|} \int_{0}^{\infty} \cdots \int_{0}^{\infty} \varpi(\mathbf{x}) x_1^{i t_1} \cdots x_n^{i t_n} e^{2 \pi i \tau F(\mathbf{x})} d \mathbf{x} \Big{|} \ll \min \{ 1, |\tau|^{-1} \}, $$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
20.00%
发文量
14
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信