Shape and force control of cable structures with minimal actuators and actuation

Q1 Arts and Humanities
N. Saeed, Ahmed A. Manguri, A. M. Adabar
{"title":"Shape and force control of cable structures with minimal actuators and actuation","authors":"N. Saeed, Ahmed A. Manguri, A. M. Adabar","doi":"10.1177/09560599211045851","DOIUrl":null,"url":null,"abstract":"Shape adjustment and stress control can be considered as one of the effective parameters in prestressed cable structures since such structures are widely constructed nowadays due to their characteristics. The assembly errors and applied loads hugely affect the cables’ nodal positions and stress due to their delicacy. The former could disturb the shape, which affects the appearance and the function of the structure. In contrast, the latter may increase the stress in some cables above the upper limit or induce slack in some others. Accordingly, a technique has been proposed that combined fmincon optimization that relies on four different algorithms with a controlling approach based on the force method. The presented method aims to minimize the total amount of actuation and miniaturize the number of actuators. The targets of previously confirmed techniques can be obtained with less actuation and fewer actuators by using the current technique. Based on the verified examples, the advantage of the current approach over the quoted methods is up to 55% and 37% in terms of the number of actuators and the total amount of actuation, respectively.","PeriodicalId":34964,"journal":{"name":"International Journal of Space Structures","volume":" 46","pages":"241 - 248"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Space Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09560599211045851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 9

Abstract

Shape adjustment and stress control can be considered as one of the effective parameters in prestressed cable structures since such structures are widely constructed nowadays due to their characteristics. The assembly errors and applied loads hugely affect the cables’ nodal positions and stress due to their delicacy. The former could disturb the shape, which affects the appearance and the function of the structure. In contrast, the latter may increase the stress in some cables above the upper limit or induce slack in some others. Accordingly, a technique has been proposed that combined fmincon optimization that relies on four different algorithms with a controlling approach based on the force method. The presented method aims to minimize the total amount of actuation and miniaturize the number of actuators. The targets of previously confirmed techniques can be obtained with less actuation and fewer actuators by using the current technique. Based on the verified examples, the advantage of the current approach over the quoted methods is up to 55% and 37% in terms of the number of actuators and the total amount of actuation, respectively.
具有最小执行器和执行器的缆索结构的形状和力控制
预应力索结构由于其自身的特点而被广泛应用,因此形状调整和应力控制是预应力索结构的有效参数之一。由于钢索的脆性,其装配误差和外加荷载对钢索节点位置和应力的影响很大。前者会干扰结构的形状,影响结构的外观和功能。相反,后者可能会使某些索的应力增加到上限以上,或在其他一些索中引起松弛。因此,本文提出了一种基于四种不同算法的fmincon优化与基于力方法的控制方法相结合的技术。所提出的方法旨在使致动总量最小化和致动器数量最小化。采用当前的技术,可以在更少的驱动和更少的驱动器的情况下获得先前确定的技术的目标。经过验证的实例表明,当前方法在致动器数量和致动总量方面分别比所引用的方法优势高达55%和37%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Space Structures
International Journal of Space Structures Arts and Humanities-Conservation
CiteScore
2.00
自引率
0.00%
发文量
21
期刊介绍: The aim of the journal is to provide an international forum for the interchange of information on all aspects of analysis, design and construction of space structures. The scope of the journal encompasses structures such as single-, double- and multi-layer grids, barrel vaults, domes, towers, folded plates, radar dishes, tensegrity structures, stressed skin assemblies, foldable structures, pneumatic systems and cable arrangements. No limitation on the type of material is imposed and the scope includes structures constructed in steel, aluminium, timber, concrete, plastics, paperboard and fabric.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信