Grace Adusei, Moses Kwame Aidoo, A. Srivastava, J. Asibuo, T. Gaiser
{"title":"The impact of climate change on the productivity of cowpea (Vigna unguiculata) under three different socio-economic pathways","authors":"Grace Adusei, Moses Kwame Aidoo, A. Srivastava, J. Asibuo, T. Gaiser","doi":"10.4081/ija.2022.2118","DOIUrl":null,"url":null,"abstract":"Crop models are useful tools for simulating the impact of climate change on crop growth, development and yield. This study assesses the impact of climate change on cowpea yield in soils with low levels of phosphorous content mainly in the Sudan Savanna and Forest Transition Zone of West Africa. A crop model solution within the general modelling framework SIMPLACE in combination with the output of four climate models for 3 contrasting shared socio-economic scenarios (SSP126, SSP370, and SSP585) was used to simulate the impact of climatic change on phenology, above ground biomass and yield parameters of cowpea. The simulations were carried out for Ouagadougou and Kumasi, representing the two major savanna biomes in West Africa (Sudan Savanna and Guinea Savanna). Previous field experimental data on the wide-spread cowpea genotype Asontem from a P-deficient soil at Kumasi (Ghana) were used to validate the SIMPLACE crop model solution. The model was able to simulate the impact of irrigation and fertilizer management on cowpea growth and yield assessment with adequate accuracy. Compared to historic simulations of the biomass and yield of cowpea, the model solution projected higher above ground biomass, and yield under the pre-dominant low input cropping systems for all the three SSPs as a result of the rise in CO2 and in spite of slightly shorted growing cycle length in both locations.","PeriodicalId":14618,"journal":{"name":"Italian Journal of Agronomy","volume":" 10","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Italian Journal of Agronomy","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.4081/ija.2022.2118","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 1
Abstract
Crop models are useful tools for simulating the impact of climate change on crop growth, development and yield. This study assesses the impact of climate change on cowpea yield in soils with low levels of phosphorous content mainly in the Sudan Savanna and Forest Transition Zone of West Africa. A crop model solution within the general modelling framework SIMPLACE in combination with the output of four climate models for 3 contrasting shared socio-economic scenarios (SSP126, SSP370, and SSP585) was used to simulate the impact of climatic change on phenology, above ground biomass and yield parameters of cowpea. The simulations were carried out for Ouagadougou and Kumasi, representing the two major savanna biomes in West Africa (Sudan Savanna and Guinea Savanna). Previous field experimental data on the wide-spread cowpea genotype Asontem from a P-deficient soil at Kumasi (Ghana) were used to validate the SIMPLACE crop model solution. The model was able to simulate the impact of irrigation and fertilizer management on cowpea growth and yield assessment with adequate accuracy. Compared to historic simulations of the biomass and yield of cowpea, the model solution projected higher above ground biomass, and yield under the pre-dominant low input cropping systems for all the three SSPs as a result of the rise in CO2 and in spite of slightly shorted growing cycle length in both locations.
期刊介绍:
The Italian Journal of Agronomy (IJA) is the official journal of the Italian Society for Agronomy. It publishes quarterly original articles and reviews reporting experimental and theoretical contributions to agronomy and crop science, with main emphasis on original articles from Italy and countries having similar agricultural conditions. The journal deals with all aspects of Agricultural and Environmental Sciences, the interactions between cropping systems and sustainable development. Multidisciplinary articles that bridge agronomy with ecology, environmental and social sciences are also welcome.