Masaki Iwasawa, Simon Portegies Zwart, Junichiro Makino
{"title":"GPU-enabled particle-particle particle-tree scheme for simulating dense stellar cluster system","authors":"Masaki Iwasawa, Simon Portegies Zwart, Junichiro Makino","doi":"10.1186/s40668-015-0010-1","DOIUrl":null,"url":null,"abstract":"<p>We describe the implementation and performance of the <span>\\(\\mathrm {P}^{3}\\mathrm{T}\\)</span> (Particle-Particle Particle-Tree) scheme for simulating dense stellar systems. In <span>\\(\\mathrm{P}^{3}\\mathrm{T}\\)</span>, the force experienced by a particle is split into short-range and long-range contributions. Short-range forces are evaluated by direct summation and integrated with the fourth order Hermite predictor-corrector method with the block timesteps. For long-range forces, we use a combination of the Barnes-Hut tree code and the leapfrog integrator. The tree part of our simulation environment is accelerated using graphical processing units (GPU), whereas the direct summation is carried out on the host CPU. Our code gives excellent performance and accuracy for star cluster simulations with a large number of particles even when the core size of the star cluster is small.</p>","PeriodicalId":523,"journal":{"name":"Computational Astrophysics and Cosmology","volume":"2 1","pages":""},"PeriodicalIF":16.2810,"publicationDate":"2015-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40668-015-0010-1","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Astrophysics and Cosmology","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1186/s40668-015-0010-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
We describe the implementation and performance of the \(\mathrm {P}^{3}\mathrm{T}\) (Particle-Particle Particle-Tree) scheme for simulating dense stellar systems. In \(\mathrm{P}^{3}\mathrm{T}\), the force experienced by a particle is split into short-range and long-range contributions. Short-range forces are evaluated by direct summation and integrated with the fourth order Hermite predictor-corrector method with the block timesteps. For long-range forces, we use a combination of the Barnes-Hut tree code and the leapfrog integrator. The tree part of our simulation environment is accelerated using graphical processing units (GPU), whereas the direct summation is carried out on the host CPU. Our code gives excellent performance and accuracy for star cluster simulations with a large number of particles even when the core size of the star cluster is small.
期刊介绍:
Computational Astrophysics and Cosmology (CompAC) is now closed and no longer accepting submissions. However, we would like to assure you that Springer will maintain an archive of all articles published in CompAC, ensuring their accessibility through SpringerLink's comprehensive search functionality.