Isolation and characterization of Rep PepYLCV encoding gene from West Sumatra

Q3 Agricultural and Biological Sciences
Bastian Nova, E. Syafriani, A. Asben, J. Jamsari
{"title":"Isolation and characterization of Rep PepYLCV encoding gene from West Sumatra","authors":"Bastian Nova, E. Syafriani, A. Asben, J. Jamsari","doi":"10.21475/poj.11.01.18.pne1055","DOIUrl":null,"url":null,"abstract":"Replicase (Rep) protein of Geminivirus is known as one of the important components not only for its successful replication in their host but also known to interact with various host plant proteins. However, it is still unclear if those interactions are associated with symptoms level. This research aims to explore the possibility of Rep as pathogenic determinant by in silico approach. Here we report the comparison of three Rep sequences isolated from Pesisir Selatan and Tanah Datar districts in West Sumatra Indonesia. The PCR-based cloning approach was used in this study to isolate the gene sequences from all isolates. Pathogenic determinant was predicted from phenotype and genotype analysis. Phenotype data showed symptoms appearance after 8 dpi for PSSWS14 and 20 dpi for PSSWS3. Furthermore, genotype showed that the nonconserved region in N-terminal of Rep makes different in its putative binding site. It is prospective to be related to the symptoms appearance rates. We predict the differences in N-terminal of Rep affecting the symptoms appearance rates of Geminivirus infection.","PeriodicalId":54602,"journal":{"name":"Plant Omics","volume":"23 15","pages":"37-41"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Omics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21475/poj.11.01.18.pne1055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 1

Abstract

Replicase (Rep) protein of Geminivirus is known as one of the important components not only for its successful replication in their host but also known to interact with various host plant proteins. However, it is still unclear if those interactions are associated with symptoms level. This research aims to explore the possibility of Rep as pathogenic determinant by in silico approach. Here we report the comparison of three Rep sequences isolated from Pesisir Selatan and Tanah Datar districts in West Sumatra Indonesia. The PCR-based cloning approach was used in this study to isolate the gene sequences from all isolates. Pathogenic determinant was predicted from phenotype and genotype analysis. Phenotype data showed symptoms appearance after 8 dpi for PSSWS14 and 20 dpi for PSSWS3. Furthermore, genotype showed that the nonconserved region in N-terminal of Rep makes different in its putative binding site. It is prospective to be related to the symptoms appearance rates. We predict the differences in N-terminal of Rep affecting the symptoms appearance rates of Geminivirus infection.
西苏门答腊岛Rep PepYLCV编码基因的分离与鉴定
双子座病毒的复制酶(Rep)蛋白是其在宿主中成功复制的重要成分之一,而且与各种宿主植物蛋白相互作用。然而,目前尚不清楚这些相互作用是否与症状水平有关。本研究旨在通过计算机模拟方法探讨Rep作为致病决定因素的可能性。在这里,我们报道了从印度尼西亚西苏门答腊的Pessir Selatan和Tanah Datar地区分离的三个Rep序列的比较。本研究采用基于PCR的克隆方法从所有分离株中分离出基因序列。通过表型和基因型分析预测致病性决定簇。表型数据显示PSSWS14在8dpi和PSSWS3在20dpi后出现症状。此外,基因型显示Rep N末端的非服务区在其假定的结合位点上有所不同。它可能与症状出现率有关。我们预测了Rep N末端的差异对双子座病毒感染症状出现率的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Omics
Plant Omics 生物-植物科学
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
6 months
期刊介绍: Plant OMICS is an international, peer-reviewed publication that gathers and disseminates fundamental and applied knowledge in almost all area of molecular plant and animal biology, particularly OMICS-es including: Coverage extends to the most corners of plant and animal biology, including molecular biology, genetics, functional and non-functional molecular breeding and physiology, developmental biology, and new technologies such as vaccines. This journal also covers the combination of many areas of molecular plant and animal biology. Plant Omics is also exteremely interested in molecular aspects of stress biology in plants and animals, including molecular physiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信